当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Membrane filtration performance enhancement and biofouling mitigation using symmetric spacers with helical filaments
Desalination ( IF 8.3 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.desal.2020.114454
Sarah Kerdi , Adnan Qamar , Alla Alpatova , Johannes S. Vrouwenvelder , Noreddine Ghaffour

Abstract Optimization of the feed spacer geometry is one of the key challenges for improved ultrafiltration performance in water treatment and desalination. Novel feed spacers with different number of helices (1–3) along the spacer filament are proposed. To elucidate the intrinsic ability of the helical feature on filtration process improvement, experiments were conducted at two different fluid inlet velocities (U0 = 0.166 m/s and 0.182 m/s). The presence of micro-helices in the filaments aids significantly in increasing the specific permeate flux when compared to the standard spacer (without helices). The highest improvement was observed in the case of 3-helical spacer (291% specific permeate flux increase at U0 = 0.182 m/s). Furthermore, Optical Coherence Tomography (OCT) imaging demonstrated less (bio)fouling amount developed on membrane surface equipped with helical spacers, whereas, a thicker and more dense cake fouling layer appeared in the case of standard spacer. Moreover, novel helical design spacers reduce the pressure drop inside the channel. The 3-helical spacer was found to have the least feed-channel pressure drop (65% of decrease relative to standard spacer). Numerical analysis was simultaneously realized by the Direct Numerical Simulation (DNS) technique to understand the hydrodynamic behavior at an elemental level inside the filtration channel. Low shear stress and high local velocity magnitudes were observed in presence of helical spacers resulting in (bio)fouling mitigation on filtration membrane surface.

中文翻译:

使用带有螺旋细丝的对称垫片增强膜过滤性能和减轻生物污染

摘要 进料隔板几何形状的优化是提高水处理和脱盐超滤性能的关键挑战之一。提出了沿隔离丝具有不同螺旋数 (1-3) 的新型进料隔离器。为了阐明螺旋特征对过滤过程改进的内在能力,在两种不同的流体入口速度(U0 = 0.166 m/s 和 0.182 m/s)下进行了实验。与标准间隔物(无螺旋)相比,细丝中微螺旋的存在有助于显着增加特定的渗透通量。在 3 螺旋间隔件的情况下观察到了最高的改进(在 U0 = 0.182 m/s 时增加了 291% 的特定渗透通量)。此外,光学相干断层扫描 (OCT) 成像表明,在配备螺旋垫片的膜表面上形成的(生物)污垢量较少,而在标准垫片的情况下,出现更厚、更致密的滤饼污垢层。此外,新颖的螺旋设计垫片减少了通道内的压降。发现 3 螺旋垫片具有最小的进料通道压降(相对于标准垫片降低了 65%)。通过直接数值模拟 (DNS) 技术同时实现数值分析,以了解过滤通道内元素水平的流体动力学行为。在螺旋间隔物的存在下观察到低剪切应力和高局部速度幅度,导致过滤膜表面上的(生物)污垢减轻。在标准间隔件的情况下,出现了更厚和更致密的滤饼污垢层。此外,新颖的螺旋设计垫片减少了通道内的压降。发现 3 螺旋垫片具有最小的进料通道压降(相对于标准垫片降低了 65%)。通过直接数值模拟 (DNS) 技术同时实现数值分析,以了解过滤通道内元素水平的流体动力学行为。在螺旋间隔物的存在下观察到低剪切应力和高局部速度幅度,导致过滤膜表面上的(生物)污垢减轻。在标准间隔件的情况下,出现了更厚和更致密的滤饼污垢层。此外,新颖的螺旋设计垫片减少了通道内的压降。发现 3 螺旋垫片具有最小的进料通道压降(相对于标准垫片降低了 65%)。通过直接数值模拟 (DNS) 技术同时实现数值分析,以了解过滤通道内元素水平的流体动力学行为。在螺旋间隔物的存在下观察到低剪切应力和高局部速度幅度,导致过滤膜表面上的(生物)污垢减轻。发现 3 螺旋垫片具有最小的进料通道压降(相对于标准垫片降低了 65%)。通过直接数值模拟 (DNS) 技术同时实现数值分析,以了解过滤通道内元素水平的流体动力学行为。在螺旋间隔物的存在下观察到低剪切应力和高局部速度幅度,导致过滤膜表面上的(生物)污垢减轻。发现 3 螺旋垫片具有最小的进料通道压降(相对于标准垫片降低了 65%)。通过直接数值模拟 (DNS) 技术同时实现数值分析,以了解过滤通道内元素水平的流体动力学行为。在螺旋间隔物的存在下观察到低剪切应力和高局部速度幅度,导致过滤膜表面上的(生物)污垢减轻。
更新日期:2020-06-01
down
wechat
bug