当前位置: X-MOL 学术Inform. Sci. › 论文详情
Robust Manhattan Non-negative Matrix Factorization for Image Recovery and Representation
Information Sciences ( IF 5.524 ) Pub Date : 2020-04-03 , DOI: 10.1016/j.ins.2020.03.096
Xiangguang Dai; Xiaojie Su; Wei Zhang; Fangzheng Xue; Huaqing Li

Existing robust non-negative matrix factorization methods fail to achieve data recovery and learn a robust representation. This is because these methods suppose that outliers and noise of the original data are the Gaussian distribution. In this paper, we propose a robust non-negative matrix model, called robust Manhattan non-negative matrix factorization, which can handle various noise (e.g. Gaussian noise, Salt and Pepper noise or Contiguous Occlusion). Different from previous robust non-negative matrix factorization models, we utilize mean filter and matrix completion as additional constraints to recover the corrupted data from normal data or neighbouring corrupted data, and achieve a robust low-dimensional representation by Manhattan non-negative matrix factorization. We theoretically compare the robustness of our proposed model with other non-negative matrix factorization models and theoretically prove the effectiveness of the proposed algorithm. Extensive experimental results on the image dataset containing noise and outliers validate the robustness and effectiveness of our proposed model for image recovery and representation.
更新日期:2020-04-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug