当前位置: X-MOL 学术Polym. Test. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Developing a thermomechanical and thermochemical model for investigating the cooling rate effects on the distortion of unsymmetrical viscoelastic polymeric composite laminates
Polymer Testing ( IF 5.1 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.polymertesting.2020.106503
Mohsen Mobarakian , Majid Safarabadi , Mohammadreza Farahani

Abstract An experimental and semi-analytical study of distortion of asymmetric composite laminates with different cooling rates and lay-ups has been presented. In this study, thermomechanical constitutive equations of thin composite laminates are developed using basic viscoelastic constitutive law considering chemical and thermal effects with time-temperature dependent material properties. To solve a fully scouple problem, both the thermochemical and thermomechanical constitutive equations are formulated. The general heat conduction equation known as the Fourier-Biot equation, viscoelastic laws, Boltzmann superposition principle and composite equations are utilized to formulate thin composite laminates. A static model with constant properties in ambient temperature and a transient model by obtaining constitutive equations are simulated. Results are compared with experimental data. Changing lay-up from cross-ply to angle-ply and then quasi isotropic will increase the value of maximum distortion. Results indicated that the increasing cooling rate will increase the value of the maximum distortion. The differences between FEM results with static analysis of different lay-ups and experimental specimens that cooled in the oven, environment and refrigerator is about 3%, 35% and 55% respectively. The differences between FEM simulation with transient analysis of different lay-ups and experimental specimens that cooled in the environment and the refrigerator is less than 9%.

中文翻译:

开发热机械和热化学模型,用于研究冷却速率对不对称粘弹性聚合物复合材料层压板变形的影响

摘要 对不同冷却速率和叠层的非对称复合材料层压板的变形进行了实验和半解析研究。在这项研究中,考虑到化学和热效应与时间-温度相关的材料特性,使用基本粘弹性本构定律开发了薄复合材料层压板的热机械本构方程。为了解决完全耦合问题,热化学和热机械本构方程都被公式化。被称为傅立叶-毕奥方程的一般热传导方程、粘弹性定律、玻尔兹曼叠加原理和复合方程被用来制定薄复合层压板。模拟了在环境温度下具有恒定特性的静态模型和通过获得本构方程的瞬态模型。结果与实验数据进行了比较。将铺层从交叉层改为角层,然后是准各向同性将增加最大畸变的值。结果表明,增加冷却速度将增加最大变形值。FEM 结果与不同铺层的静态分析和在烘箱、环境和冰箱中冷却的实验样品之间的差异分别约为 3%、35% 和 55%。FEM 模拟与不同叠层的瞬态分析与在环境和冰箱中冷却的实验样品之间的差异小于 9%。结果表明,增加冷却速度将增加最大变形值。FEM 结果与不同铺层的静态分析和在烘箱、环境和冰箱中冷却的实验样品之间的差异分别约为 3%、35% 和 55%。FEM 模拟与不同叠层的瞬态分析与在环境和冰箱中冷却的实验样品之间的差异小于 9%。结果表明,增加冷却速度将增加最大变形值。FEM 结果与不同铺层的静态分析和在烘箱、环境和冰箱中冷却的实验样品之间的差异分别约为 3%、35% 和 55%。FEM 模拟与不同叠层的瞬态分析与在环境和冰箱中冷却的实验样品之间的差异小于 9%。
更新日期:2020-07-01
down
wechat
bug