当前位置: X-MOL 学术EMBO Mol. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Resolving mechanisms of immune-mediated disease in primary CD4 T cells.
EMBO Molecular Medicine ( IF 9.0 ) Pub Date : 2020-04-01 , DOI: 10.15252/emmm.202012112
Christophe Bourges 1, 2 , Abigail F Groff 3 , Oliver S Burren 1, 2 , Chiara Gerhardinger 3 , Kaia Mattioli 3 , Anna Hutchinson 4 , Theodore Hu 1, 2 , Tanmay Anand 1, 2 , Madeline W Epping 1, 2 , Chris Wallace 1, 3 , Kenneth Gc Smith 1, 2 , John L Rinn 3, 5 , James C Lee 1, 2, 3
Affiliation  

Deriving mechanisms of immune-mediated disease from GWAS data remains a formidable challenge, with attempts to identify causal variants being frequently hampered by strong linkage disequilibrium. To determine whether causal variants could be identified from their functional effects, we adapted a massively parallel reporter assay for use in primary CD4 T cells, the cell type whose regulatory DNA is most enriched for immune-mediated disease SNPs. This enabled the effects of candidate SNPs to be examined in a relevant cellular context and generated testable hypotheses into disease mechanisms. To illustrate the power of this approach, we investigated a locus that has been linked to six immune-mediated diseases but cannot be fine-mapped. By studying the lead expression-modulating SNP, we uncovered an NF-κB-driven regulatory circuit which constrains T-cell activation through the dynamic formation of a super-enhancer that upregulates TNFAIP3 (A20), a key NF-κB inhibitor. In activated T cells, this feedback circuit is disrupted-and super-enhancer formation prevented-by the risk variant at the lead SNP, leading to unrestrained T-cell activation via a molecular mechanism that appears to broadly predispose to human autoimmunity.

中文翻译:


解决原代 CD4 T 细胞中免疫介导疾病的机制。



从 GWAS 数据中推导免疫介导疾病的机制仍然是一个艰巨的挑战,试图识别因果变异常常受到强连锁不平衡的阻碍。为了确定是否可以从其功能效应中识别出因果变异,我们采用了大规模并行报告基因测定法,用于初级 CD4 T 细胞,这种细胞类型的调节 DNA 中免疫介导疾病 SNP 最为丰富。这使得候选 SNP 的作用能够在相关的细胞环境中进行检查,并产生疾病机制的可检验假设。为了说明这种方法的威力,我们研究了一个与六种免疫介导的疾病相关但无法精细定位的位点。通过研究先导表达调节 SNP,我们发现了一个 NF-κB 驱动的调节回路,该回路通过动态形成上调 TNFAIP3 (A20)(一种关键 NF-κB 抑制剂)的超级增强子来限制 T 细胞激活。在激活的 T 细胞中,这种反馈回路被先导 SNP 处的风险变异破坏,并阻止了超级增强子的形成,从而通过似乎广泛易感人类自身免疫的分子机制导致不受限制的 T 细胞激活。
更新日期:2020-04-01
down
wechat
bug