当前位置: X-MOL 学术ChemNanoMat › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual‐Function Sacrificing Template‐Directed Strategy for Constructing Hollow and Core‐Shell Nonstoichiometric Fe1–xS@C Microspheres Exhibiting Ultrafast Sodium Storage
ChemNanoMat ( IF 2.6 ) Pub Date : 2020-04-15 , DOI: 10.1002/cnma.202000077
Lixia Liu 1 , Jianmei Yuan 1 , Xuefang Shang 1
Affiliation  

Nanostructure design and surface engineering are considered to not only improve the conductivity and buffer the severe volume expansion, but also prevent discharge products dissolving into the electrolyte, boosting the sodium storage performances of iron sulfides. Herein, we developed a dual‐function sacrificing template‐engaged strategy to construct hollow and core‐shell Fe1–xS‐based microspheres (labeled as Fe1–xS@C). Benefiting from its unique structural feature, the Fe1–xS@C composite, as a anode material for sodium‐ion batteries, delivers a high specific capacity of about 700 mAh g−1 at 0.2 A g−1 after 100 cycles and an excellent rate capability of 444 mAh g−1 at 20 A g−1. Impressively, such a strategy can be further extended to prepare hollow and core‐shell NiS@C spheres with slight modifications.

中文翻译:

具有双重功能的模板导向策略,用于构建具有超快钠存储能力的空心和核壳非化学计量Fe1-xS @ C微球

纳米结构设计和表面工程被认为不仅可以提高电导率并缓冲严重的体积膨胀,而且还可以防止放电产物溶解到电解质中,从而提高硫化铁的钠储存性能。本文中,我们开发了一种双重牺牲模板参与策略,以构建空心和核壳型的Fe 1–x S基微球(标记为Fe 1–x S @ C)。受益于其独特的结构特征,Fe 1-x S @ C复合材料作为钠离子电池的负极材料,经过100次循环后,在0.2 A g -1时可提供约700 mAh g -1的高比容量。20 A g时具有444 mAh g -1的出色速率能力-1。令人印象深刻的是,可以稍微扩展这种策略以制备空心和核壳型NiS @ C球。
更新日期:2020-04-15
down
wechat
bug