当前位置: X-MOL 学术J. Opt. Soc. Am. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Near-UV luminescence tomography with an aperture-free meta super oscillatory lens for single molecule detection.
Journal of the Optical Society of America A ( IF 1.4 ) Pub Date : 2020-04-01 , DOI: 10.1364/josaa.383854
Hassan Ali , Haibin Ni , Xin Xu

Medical physics offers super oscillatory lenses (SOL) to attain subwavelength focusing for efficient image resolution in the detection of a single molecule. In this paper, we propose a negative-indexed permeability-controlled meta SOL, which restores the light concentration via exciting surface plasmon resonance and enhances luminescence at our region of interest, i.e., fluid sample (${S_L}$SL). The meta SOL is aperture-free in comparison with other techniques (zero-mode waveguides and nano antennas) and hence avoids the constraints, which are posed by nano apertures, to insert a small volume of $ S_L $SL into these nano apertures for detection purposes. The meta SOL is a unique combination of gold split rings mounted on silicon dioxide (${{\rm SiO}_2}$SiO2) substrate and operational in the near-ultraviolet (UV) region. We utilized the phenomena of negative index of refraction, and our simulated trails exploit the magnetic (${\mu _r}$μr) response of the meta SOL by analyzing its transmission spectra in the frequency range from 3.53 to 3.57 Peta Hz. We observe the methodical response of the meta SOL with its ample potential to surpass the resolution at a working wavelength of $\lambda ={84.173}\;{\rm nm}$λ=84.173nm, which enhances luminescence by restoring the evanescent UV magnetic field (${B_{\rm UV}}$BUV) at ${S_L}$SL. This technique will offer a new and easy approach to uplift the efficiency of super oscillatory lenses in the near-UV regime to benefit single molecule detection techniques and thus the novelty.

中文翻译:

带有无孔径超中继透镜的近紫外发光层析成像,可用于单分子检测。

医学物理学提供了超级振荡透镜(SOL)来实现亚波长聚焦,从而在检测单个分子时实现有效的图像分辨率。在本文中,我们提出了一种负折射率渗透率控制的meta SOL,它通过激发表面等离子体激元共振来恢复光的浓度,并增强我们感兴趣区域(例如流体样品($ {S_L} $ SL))的发光。与其他技术(零模波导和纳米天线)相比,meta SOL无孔径,因此避免了由纳米孔径造成的限制,可以将少量$ S_L $ SL插入这些纳米孔径中进行检测目的。meta SOL是安装在二氧化硅($ {{\ rm SiO} _2} $ SiO2)衬底上且可在近紫外(UV)区域工作的金裂环的独特组合。我们利用了负折射率现象,并且我们的模拟轨迹通过分析元SOL在3.53至3.57 Peta Hz频率范围内的透射光谱,利用了元SOL的磁响应($ {\ mu _r} $μr)。我们观察到meta SOL在系统工作波长为$ \ lambda = {84.173} \; {\ rm nm} $λ= 84.173nm时具有超过分辨率的足够潜力的系统响应,这通过恢复rest逝的紫外线增强了发光磁场($ {B _ {\ rm UV}} $ BUV)在$ {S_L} $ SL。这项技术将提供一种新的简便方法,以提高超振动镜在近紫外条件下的效率,从而有益于单分子检测技术,从而带来新颖性。我们的模拟轨迹通过分析元SOL在3.53至3.57 Peta Hz频率范围内的传输谱来利用元SOL的磁响应($ {\ mu _r} $μr)。我们观察到meta SOL在系统工作波长为$ \ lambda = {84.173} \; {\ rm nm} $λ= 84.173nm时具有超过分辨率的足够潜力的系统响应,这通过恢复rest逝的紫外线增强了发光磁场($ {B _ {\ rm UV}} $ BUV)在$ {S_L} $ SL。这项技术将提供一种新的简便方法,以提高超振动镜在近紫外条件下的效率,从而有益于单分子检测技术,从而带来新颖性。我们的模拟轨迹通过分析元SOL在3.53至3.57 Peta Hz频率范围内的传输谱来利用元SOL的磁响应($ {\ mu _r} $μr)。我们观察到meta SOL在系统工作波长为$ \ lambda = {84.173} \; {\ rm nm} $λ= 84.173nm时具有超过分辨率的足够潜力的系统响应,这通过恢复rest逝的紫外线增强了发光磁场($ {B _ {\ rm UV}} $ BUV)在$ {S_L} $ SL。这项技术将提供一种新的简便方法,以提高超振动镜在近紫外条件下的效率,从而有益于单分子检测技术,从而带来新颖性。{\ rm nm} $λ= 84.173nm,它通过在$ {S_L} $ SL处恢复van逝的紫外线磁场($ {B _ {\ rm UV}} $ BUV)来增强发光。这项技术将提供一种新的简便方法,以提高超振动镜在近紫外条件下的效率,从而有益于单分子检测技术,从而带来新颖性。{\ rm nm} $λ= 84.173nm,它通过在$ {S_L} $ SL处恢复van逝的紫外线磁场($ {B _ {\ rm UV}} $ BUV)来增强发光。这项技术将提供一种新的简便方法,以提高超振动镜在近紫外条件下的效率,从而有益于单分子检测技术,从而带来新颖性。
更新日期:2020-03-20
down
wechat
bug