当前位置: X-MOL 学术Surf. Coat. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure of titanium alloy modified by high-intensity implantation of low- and high-energy aluminium ions
Surface & Coatings Technology ( IF 5.3 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.surfcoat.2020.125722
А.I. Ryabchikov , D.O. Sivin , I.A. Bozhko , I.B. Stepanov , A.E. Shevelev

This study focuses on the analysis of microstructural, elemental and phase compositions of surface and near-surface layers of titanium after the implantation of aluminium. A titanium alloy with a chemical composition close to commercially pure titanium (grade 2) was used as the target material. Ion implantation was performed using two modes of irradiation: 1. repetitively pulsed ion beams with a mean ion energy of 35 keV; 2. low-energy-focused ion beams of high intensity with a mean ion energy of 2.6 keV. The irradiation fluence reached 1.1 × 1018 ion/cm2 using the first mode and 1.6 × 1021 ion/cm2 using the second mode. In both cases, the beam itself heated the targets. The peak concentration of aluminium after the implantation of medium-energy ions was ~65 at.%, and the maximum depth of dopant penetration was 2.6 μm. On the contrary, in the case of high-intensity low-energy ion implantation, the surface concentration of dopant reached a maximum of 25 at.%, but the depth of penetration increased significantly and achieved 50 μm. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that fine-grained intermetallic phases, Ti3Al and TiAl, and solid solutions of various compositions were possibly formed after the medium-energy ion implantation. The mean grain size of the intermetallic phases was ~50 nm. XRD and TEM analyses in the case of low-energy high-intensity ion implantation demonstrated the formation of the ion-alloyed layer, which comprised intermetallic phase Ti3Al and solid solutions of aluminium in titanium. The grain size of Ti3Al phase can be 5 μm and more.



中文翻译:

高强度和低能量铝离子高强度注入改性钛合金的微观结构

这项研究的重点是分析铝注入后钛表面和近表面层的微观结构,元素和相组成。使用化学成分接近于商业纯钛(等级2)的钛合金作为目标材料。离子注入使用两种照射方式进行:1.重复脉冲离子束,平均离子能量为35 keV;2.高强度低能量聚焦离子束,平均离子能量为2.6 keV。使用第一模式的辐照通量达到1.1×10 18 ion / cm 2,达到1.6×10 21 ion / cm 2使用第二种模式。在这两种情况下,光束本身都会加热目标。注入中能离子后,铝的峰值浓度为〜65 at。%,最大掺杂深度为2.6μm。相反,在高强度低能量离子注入的情况下,掺杂剂的表面浓度最高达到25 at。%,但渗透深度显着增加,达到50μm。X射线衍射(XRD)和透射电子显微镜(TEM)的结果表明,细粒金属间相Ti 3在中能离子注入之后,可能形成Al和TiAl以及各种组成的固溶体。金属间相的平均晶粒尺寸为〜50nm。在低能高强度离子注入的情况下,XRD和TEM分析表明形成了离子合金层,该离子合金层包括金属间相Ti 3 Al和铝在钛中的固溶体。Ti 3 Al相的晶粒尺寸可以为5μm以上。

更新日期:2020-04-01
down
wechat
bug