当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double-Sided Graphene Oxide Encapsulated Silver Nanowire Transparent Electrode with Improved Chemical and Electrical Stability.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-04-01 , DOI: 10.1021/acsami.0c03587
Woo Hyun Chae 1 , Thomas Sannicolo 1 , Jeffrey C Grossman 1
Affiliation  

Owing to their high conductivity, transparency, flexibility, and compatibility with solution processes, silver nanowire (AgNW) networks have been widely explored as a promising alternative to indium tin oxide (ITO). However, their susceptibility to corrosion and thermal instability still remain limiting factors for widespread adoption in a range of devices including solar cells, transparent heaters, and light-emitting diodes. In this study, we report a scalable and economically viable process involving electrophoretic deposition (EPD) to fabricate a highly stable hybrid transparent electrode with a sandwich-like structure, where a AgNW network is covered by graphene oxide (GO) films on both sides. The newly developed all solution process allows the conductive transparent film to be transferred to an arbitrary surface after deposition and demonstrates excellent sheet resistance (15 Ω/sq) and tunable transmittance (70–87% at 550 nm). Unlike bare AgNW networks, the hybrid electrode retains its original conductivity under long-term storage at up to 80% relative humidity. This chemical resilience is explained by the absence of silver corrosion products for the AgNW encapsulated by GO as indicated by X-ray photoelectron spectroscopy. In situ voltage ramping and resistance measurements up to 20 V indicate a novel stabilization mechanism enabled by the presence of GO which delays the failure onset and prevents abrupt divergence of the resistance to the megaohm range experienced by bare AgNW networks. The double-sided nature of the GO coating offers combined stability and performance to the AgNW network, which adds unique versatility of our electrodes to be used toward applications that require a wide range of thermal and chemical stabilities.

中文翻译:

双面氧化石墨烯封装的银纳米线透明电极,具有改进的化学和电稳定性。

由于银纳米线(AgNW)网络具有高导电性,透明性,柔韧性以及与溶液工艺的兼容性,因此已被广泛探索为铟锡氧化物(ITO)的有前途的替代品。然而,它们对腐蚀和热不稳定性的敏感性仍然是在包括太阳能电池,透明加热器和发光二极管的一系列设备中广泛采用的限制因素。在这项研究中,我们报告了一种可扩展且经济可行的工艺,该工艺涉及电泳沉积(EPD)来制造具有三明治状结构的高度稳定的混合透明电极,其中AgNW网络的两侧均被氧化石墨烯(GO)膜覆盖。新开发的全溶液工艺可在沉积后将透明导电膜转移到任意表面,并表现出极好的薄层电阻(15Ω/ sq)和可调的透射率(在550 nm时为70-87%)。与裸露的AgNW网络不同,混合电极在高达80%的相对湿度下长期保存后仍能保持其原始电导率。X射线光电子能谱表明,GO封装的AgNW不存在银腐蚀产物,从而解释了这种化学弹性。原位电压上升和高达20 V的电阻测量表明,GO的存在可以实现一种新颖的稳定机制,该机制可以延迟故障开始时间,并防止电阻突变到裸AgNW网络所经历的兆欧范围。GO涂层的双面性质为AgNW网络提供了综合的稳定性和性能,这增加了我们电极的独特多功能性,可用于需要广泛的热和化学稳定性的应用中。
更新日期:2020-04-01
down
wechat
bug