当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Separable games
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-29 , DOI: arxiv-2003.13128
Laura Arditti; Giacomo Como; Fabio Fagnani

We introduce the notion of separable games, which refines and generalizes that of graphical games. We prove that there exists a minimal splitting with respect to which a game is separable. Moreover we prove that in every strategic equivalence class, there is a game separable with respect to the minimal splitting in the class. This game is also graphical with respect to the smallest graph in the class, which represent a minimal complexity graphical description for the game. We prove a symmetry property of the minimal splitting of potential games and we describe how this property reflects to a decomposition of the potential function. In particular, these last results strengthen the ones recently proved for graphical potential games. Finally, we study the interplay between separability and the classical decomposition of games proposed by [5], characterizing the separability properties of each part of the decomposition.
更新日期:2020-03-31

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug