当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Long Alternating Paths Exist
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-30 , DOI: arxiv-2003.13291
Wolfgang Mulzer; Pavel Valtr

Let $P$ be a set of $2n$ points in convex position, such that $n$ points are colored red and $n$ points are colored blue. A non-crossing alternating path on $P$ of length $\ell$ is a sequence $p_1, \dots, p_\ell$ of $\ell$ points from $P$ so that (i) all points are pairwise distinct; (ii) any two consecutive points $p_i$, $p_{i+1}$ have different colors; and (iii) any two segments $p_i p_{i+1}$ and $p_j p_{j+1}$ have disjoint relative interiors, for $i \neq j$. We show that there is an absolute constant $\varepsilon > 0$, independent of $n$ and of the coloring, such that $P$ always admits a non-crossing alternating path of length at least $(1 + \varepsilon)n$. The result is obtained through a slightly stronger statement: there always exists a non-crossing bichromatic separated matching on at least $(1 + \varepsilon)n$ points of $P$. This is a properly colored matching whose segments are pairwise disjoint and intersected by common line. For both versions, this is the first improvement of the easily obtained lower bound of $n$ by an additive term linear in $n$. The best known published upper bounds are asymptotically of order $4n/3+o(n)$.
更新日期:2020-03-31

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug