当前位置: X-MOL 学术J. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing the impact of spatial allocation of bioretention cells on shallow groundwater – an integrated surface-subsurface catchment-scale analysis with SWMM-MODFLOW
Journal of Hydrology ( IF 6.4 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.jhydrol.2020.124910
Kun Zhang , Ting Fong May Chui

Abstract Well-designed and implemented green infrastructure (GI) can help to recover the natural hydrologic regime of urban areas. A large-scale GI planning requires a good understanding of the impact of GI spatial allocation on surface-subsurface hydrologic dynamics. This study, firstly, developed a coupled surface-subsurface hydrological model (SWMM-MODFLOW) that can simulate fine-temporal-scale two-way interactions between GI and groundwater at catchment scale. The model was calibrated and validated using the monitoring data at one urban catchment within Kitsap County, WA, US. Based on the validated model, a series of hypothetical simulations was then performed to evaluate how spatial allocation of bioretention cells (BCs), one type of GI, influences and correlates with surface runoff and groundwater table dynamics. The spatial allocation was represented by implementation ratio (i.e., area), aggregation level (i.e., density) and location of BCs. The hydrologic dynamics were quantified by peak and volume reductions of surface runoff, as well as groundwater table rise and standard deviation of groundwater levels. A small number of BCs can raise groundwater table locally and regionally. However, it may not affect the spatial uniformity of groundwater levels (represented as the standard deviation of groundwater levels) if being properly allocated. Although the impact of aggregation level of BCs was relatively low compared to the implementation ratio and relative location of BCs, more-distributed BCs resulted in lower peak groundwater table rises but higher temporally-averaged groundwater table rises. Allocating BCs upstream resulted in higher groundwater table rises regionally, which is recommended for areas of deeper groundwater tables. While, allocating BCs downstream is more recommended for areas of shallower groundwater tables. BCs of greater surface runoff control efficiencies lead to higher groundwater table rises, which highlights the importance of considering the tradeoff between surface runoff control and groundwater protection in GI planning.

中文翻译:

评估生物滞留细胞空间分配对浅层地下水的影响——使用 SWMM-MODFLOW 的综合地表-地下集水区尺度分析

摘要 精心设计和实施的绿色基础设施 (GI) 有助于恢复城市地区的自然水文状况。大规模的 GI 规划需要很好地了解 GI 空间分配对地表-地下水文动力学的影响。本研究首先开发了一个耦合地表-地下水文模型 (SWMM-MODFLOW),可以模拟流域尺度上 GI 和地下水之间的精细时间尺度双向相互作用。该模型使用美国华盛顿州基萨普县一个城市集水区的监测数据进行校准和验证。基于经过验证的模型,随后进行了一系列假设模拟,以评估生物滞留细胞 (BC)(一种 GI 类型)的空间分配如何影响地表径流和地下水位动态并与之相关联。空间分配由实施比率(即面积)、聚集水平(即密度)和 BC 的位置表示。水文动力学通过地表径流的峰值和体积减少,以及地下水位上升和地下水位标准偏差进行量化。少数 BC 可以提高当地和区域的地下水位。但是,如果分配得当,它可能不会影响地下水位的空间均匀性(以地下水位的标准差表示)。虽然与BCs的实施率和相对位置相比,BCs聚集水平的影响相对较低,但BCs分布越多,地下水位峰值上升越低,但时间平均地下水位上升越高。向上游分配 BC 会导致区域地下水位升高,建议用于地下水位较深的地区。而对于地下水位较浅的地区,更建议将 BC 分配到下游。更高的地表径流控制效率的 BC 会导致更高的地下水位上升,这突出了在 GI 规划中考虑地表径流控制和地下水保护之间权衡的重要性。
更新日期:2020-07-01
down
wechat
bug