当前位置: X-MOL 学术Phys. fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical design of a highly efficient microfluidic chip for blood plasma separation
Physics of Fluids ( IF 4.1 ) Pub Date : 2020-03-01 , DOI: 10.1063/1.5144436
Guansheng Li 1 , Ting Ye 1 , Sitong Wang 1 , Xuejin Li 2 , Rizwan UI Haq 3
Affiliation  

Blood plasma separation may be one of the most frequent operations in daily laboratory analysis so that a highly efficient separation could save time, cost, and labor for laboratory operators. A numerical technique is demonstrated in this work to design a highly efficient microfluidic chip that can separate 64% plasma from blood with 100% purity. Simulations are carried out for the blood flow by a hybrid method of smoothed dissipative particle dynamics and immersed boundary method (SDPD-IBM). SDPD is used to model the motion of blood flow, while IBM is used to handle the interaction between cells and plasma. A single bifurcation, as the elementary component of the microfluidic chip, is first examined to find an optimal parameter group of flow rate and branch angle, which can generate a maximum separation efficiency on the premise of 100% purity. Then, the microfluidic chip is designed based on the optimal parameter group and compared with the existing experimental chip to analyze its performance. It is shown that the designed chip has a separation efficiency about 40% larger than the experimental one. Finally, the performance of the designed chip is analyzed by investigating the parameter dependence, and two critical parameters are studied, the cell hematocrit and inflow rate. The results provide an optimal hematocrit of 10.4% and an optimal inflow rate of 13.3 μl/h in order to obtain a high efficiency and 100% purity, which provides guidance for the level of diluting blood and the speed of injecting blood in experiments.

中文翻译:

一种高效血浆分离微流控芯片的数值设计

血浆分离可能是实验室日常分析中最常见的操作之一,因此高效的分离可以为实验室操作人员节省时间、成本和劳动力。在这项工作中展示了一种数值技术来设计一种高效的微流控芯片,可以将 64% 的血浆与 100% 纯度的血液分离。通过平滑耗散粒子动力学和浸入边界方法 (SDPD-IBM) 的混合方法对血流进行模拟。SDPD 用于模拟血流运动,而 IBM 用于处理细胞和血浆之间的相互作用。单个分叉作为微流控芯片的基本组成部分,首先被检测以找到流速和分支角度的最佳参数组,在100%纯度的前提下可以产生最大的分离效率。然后,基于最优参数组设计微流控芯片,并与现有实验芯片进行对比分析其性能。结果表明,所设计芯片的分离效率比实验芯片高约40%。最后,通过研究参数依赖性来分析设计芯片的性能,并研究了两个关键参数,细胞血细胞比容和流入速率。结果提供了10.4%的最佳血细胞比容和13.3 μl/h的最佳流入速度,以获得高效率和100%纯度,这为实验中稀释血液的水平和注射血液的速度提供了指导。结果表明,所设计芯片的分离效率比实验芯片高约40%。最后,通过研究参数依赖性来分析设计芯片的性能,并研究了两个关键参数,细胞血细胞比容和流入速率。结果提供了10.4%的最佳血细胞比容和13.3 μl/h的最佳流入速度,以获得高效率和100%纯度,这为实验中稀释血液的水平和注射血液的速度提供了指导。结果表明,所设计芯片的分离效率比实验芯片高约40%。最后,通过研究参数依赖性来分析设计芯片的性能,并研究了两个关键参数,细胞血细胞比容和流入速率。结果提供了10.4%的最佳血细胞比容和13.3 μl/h的最佳流入速度,以获得高效率和100%纯度,这为实验中稀释血液的水平和注射血液的速度提供了指导。
更新日期:2020-03-01
down
wechat
bug