当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significant Promotion of Surface Oxygen Vacancies on Bimetallic CoNi Nanocatalysts for Hydrodeoxygenation of Biomass-derived Vanillin to Produce Methylcyclohexanol
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-03-31 , DOI: 10.1021/acssuschemeng.0c01015
Mengran Liu 1 , Jingyi Zhang 1 , Lirong Zheng 2 , Guoli Fan 1 , Lan Yang 1 , Feng Li 1
Affiliation  

Constructing surface defective structures (e.g., oxygen vacancies) on metal catalysts may alter their surface electronic properties, thus controlling the absorption and activation of reactant molecules and resultantly governing their catalytic activity. Herein, a series of bimetallic CoNi nanocatalysts were fabricated to be employed in the hydrodeoxygenation (HDO) of lignin-derived vanillin to produce methylcyclohexanol (MCYL). It was demonstrated that surface CoOx-decorated CoNi nanoparticles (NPs) could be generated from Co–Ni–Al-layered double hydroxide precursors. The as-fabricated bimetallic CoNi nanocatalyst with a Co/Ni atomic ratio of 2:1 exhibited an unprecedented catalytic HDO performance with nearly 100% yield of MCYL and an ultrahigh turnover frequency of 1303 h–1 under mild reaction conditions (200 °C and 1.0 MPa hydrogen pressure). XPS spectra and in situ FT-IR absorption results demonstrated that the introduction of Co into bimetallic CoNi NPs was beneficial to the formation of favorable electron-rich Co0 species and abundant surface-defective CoOx species. Combining with density functional theory calculations and experimental results, it was revealed that surface oxygen vacancies stemming from CoOx species significantly promoted the adsorption and activation of reactants, especially vanillin and the 2-methoxy-4-methylphenol intermediate, and meanwhile, surface electron-rich Co0 species on CoNi NPs could favor the activation of oxygen-containing groups. Correspondingly, HDO could proceed rapidly via a direct deoxygenation process of the carbonyl group or methoxy group, with the assistance of double active hydrogen species originating from molecular hydrogen and isopropanol solvent, greatly accelerating the multipath tandem reactions. The present findings provide an advanced approach for designing high-performance non-noble-metal catalysts applied in the catalytic HDO transformation of various biomass derivatives.

中文翻译:

显着促进双金属CoNi纳米催化剂上表面氧空位,以生物质衍生的香兰素加氢脱氧生产甲基环己醇

在金属催化剂上构建表面有缺陷的结构(例如,氧空位)可能会改变其表面电子性能,从而控制反应物分子的吸收和活化并因此控制其催化活性。本文中,制备了一系列双金属CoNi纳米催化剂以用于木质素衍生的香兰素的加氢脱氧(HDO)以生产甲基环己醇(MCYL)。结果表明,可以用Co-Ni-Al层状双氢氧化物前体生成表面CoO x装饰的CoNi纳米颗粒(NPs)。Co / Ni原子比为2:1的双金属CoNi纳米催化剂具有前所未有的催化HDO性能,MCYL的收率接近100%,超高周转频率为1303 h –1在温和的反应条件下(200°C和1.0 MPa氢气压力)。XPS光谱和原位FT-IR吸收结果表明,将Co引入双金属CoNi NPs中有利于形成有利的富电子Co 0物种和丰富的表面缺陷CoO x物种。结合密度泛函理论计算和实验结果表明,CoO x物种产生的表面氧空位显着促进了反应物的吸附和活化,特别是香兰素和2-甲氧基-4-甲基苯酚中间体,同时表面电子-富钴0CoNi NPs上的两个物种可能有助于含氧基团的活化。相应地,在源自分子氢和异丙醇溶剂的双活泼氢物种的辅助下,HDO可以通过羰基或甲氧基的直接脱氧过程迅速进行,从而大大加速了多径串联反应。本发现为设计用于各种生物质衍生物的催化HDO转化的高性能非贵金属催化剂的设计提供了一种先进的方法。
更新日期:2020-04-23
down
wechat
bug