当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Minding the Gap between Plant and Bacterial Photosynthesis within a Self-Assembling Biohybrid Photosystem.
ACS Nano ( IF 15.8 ) Pub Date : 2020-03-31 , DOI: 10.1021/acsnano.0c00058
Juntai Liu 1 , Judith Mantell 1, 2 , Michael R Jones 1
Affiliation  

Many strategies for meeting mankind's future energy demands through the exploitation of plentiful solar energy have been influenced by the efficient and sustainable processes of natural photosynthesis. A limitation affecting solar energy conversion based on photosynthetic proteins is the selective spectral coverage that is the consequence of their particular natural pigmentation. Here we demonstrate the bottom-up formation of semisynthetic, polychromatic photosystems in mixtures of the chlorophyll-based LHCII major light harvesting complex from the oxygenic green plant Arabidopsis thaliana, the bacteriochlorophyll-based photochemical reaction center (RC) from the anoxygenic purple bacterium Rhodobacter sphaeroides and synthetic quantum dots (QDs). Polyhistidine tag adaptation of LHCII and the RC enabled predictable self-assembly of LHCII/RC/QD nanoconjugates, the thermodynamics of which could be accurately modeled and parametrized. The tricomponent biohybrid photosystems displayed enhanced solar energy conversion via either direct chlorophyll-to-bacteriochlorophyll energy transfer or an indirect pathway enabled by the QD, with an overall energy transfer efficiency comparable to that seen in natural photosystems.

中文翻译:

在自组装生物杂交光系统中注意植物与细菌光合作用之间的差距。

通过开发大量太阳能来满足人类未来能源需求的许多策略都受到了自然光合作用的有效和可持续过程的影响。影响基于光合作用蛋白的太阳能转化的一个局限是选择性光谱覆盖,这是它们特殊的天然色素沉着的结果。在这里,我们证明了在自含氧绿色植物拟南芥叶绿素基于LHCII主要光收集复合物,来自无氧紫色细菌球形红球藻的细菌基于叶绿素的光化学反应中心(RC)的混合物的混合物中,自底向上形成半合成的多色光系统。和合成量子点(QD)。LHCII和RC的多组氨酸标签适应性实现了LHCII / RC / QD纳米共轭物的可预测的自组装,其热力学可以精确建模和参数化。三组分生物混合光系统通过直接叶绿素到细菌性叶绿素的能量转移或QD启用的间接途径显示出增强的太阳能转化,其总能量转移效率与自然光系统相当。
更新日期:2020-03-31
down
wechat
bug