当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Covering minimal separators and potential maximal cliques in $P_t$-free graphs
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-27 , DOI: arxiv-2003.12345
Andrzej Grzesik; Tereza Klimošová; Marcin Pilipczuk; Michał Pilipczuk

A graph is called $P_t$-free} if it does not contain a $t$-vertex path as an induced subgraph. While $P_4$-free graphs are exactly cographs, the structure of $P_t$-free graphs for $t \geq 5$ remains little understood. On one hand, classic computational problems such as Maximum Weight Independent Set (MWIS) and $3$-Coloring are not known to be NP-hard on $P_t$-free graphs for any fixed $t$. On the other hand, despite significant effort, polynomial-time algorithms for MWIS in $P_6$-free graphs~[SODA 2019] and $3$-Coloring in $P_7$-free graphs~[Combinatorica 2018] have been found only recently. In both cases, the algorithms rely on deep structural insights into the considered graph classes. One of the main tools in the algorithms for MWIS in $P_5$-free graphs~[SODA 2014] and in $P_6$-free graphs~[SODA 2019] is the so-called Separator Covering Lemma that asserts that every minimal separator in the graph can be covered by the union of neighborhoods of a constant number of vertices. In this note we show that such a statement generalizes to $P_7$-free graphs and is false in $P_8$-free graphs. We also discuss analogues of such a statement for covering potential maximal cliques with unions of neighborhoods.
更新日期:2020-03-30

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug