当前位置: X-MOL 学术Chin. J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modification of Hole Transport Layers for Fabricating High Performance Non‐fullerene Polymer Solar Cells
Chinese Journal of Chemistry ( IF 5.5 ) Pub Date : 2020-03-29 , DOI: 10.1002/cjoc.201900462
B. Hari Babu 1 , Chengkun Lyu 1 , Hongwei Zhang 2 , Zhihao Chen 1 , Fenghong Li 2 , Lin Feng 1 , Xiao‐Tao Hao 1, 3
Affiliation  

Interfacial engineering is expected to be a feasible strategy to improve the charge transport properties of the hole transport layer (HTL), which is of crucial importance to boost the device performance of organic solar cells (OSCs). In this study, two types of alcohol soluble materials, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and di‐tetrabutylammoniumcis–bis(isothiocyanato)bis (2,2’‐bipyridyl‐4,4’‐dicarboxylato) ruthenium(II) (N719) dye were selected as the dopant for HTL. The doping of F4‐TCNQ and N719 dye in poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with and without integrating a graphene quantum‐dots (G‐QDs) layer has been explored in poly[[2,6′‐4‐8‐di(5‐ethylhexylthienyl)benzo[1,2‐b :3,3‐b ]dithiophene][3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thio‐phenediyl:(2,2′‐((2Z,2′Z)‐(((4,4,9, 9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H ‐indene‐2,1‐diylidene))dimalononitrile (PTB7‐Th:IEICO‐4F) OSCs. The power conversion efficiency of the non‐fullerene OSCs has been increased to 10.12% from 8.84%. The influence of HTL modification on the nano‐morphological structures and photophysical properties is analyzed based on the comparative studies performed on the control and modified devices. The use of chemical doping and bilayer strategy optimizes the energy level alignment, nanomorphology, hole mobility, and work‐function of HTL, leading to considerable reduction of the leakage current and recombination losses. Our work demonstrates that the doping of HTL and the incorporation of G‐QDs layer to constitute a bilayer HTL is an promising strategy to fabricate high performance non‐fullerene polymer solar cells

中文翻译:

制备高性能非富勒烯聚合物太阳能电池空穴传输层的改性

界面工程有望成为改善空穴传输层(HTL)的电荷传输性能的可行策略,这对于提高有机太阳能电池(OSC)的器件性能至关重要。在这项研究中,两种类型的醇溶性材料,即2,3,5,6-四氟-7,7,8,8-四氰基喹二甲烷(F 4 -TCNQ)和二四丁基铵顺式-双(异硫氰酸根)双(2,2选择'-Bipyridyl-4,4'-dicarboxylato)钌(II)(N719)染料作为HTL的掺杂剂。已在聚[[2,聚二乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)中掺入和不掺入石墨烯量子点(G-QDs)层中的F 4 -TCNQ和N719染料掺杂。6′-4-8-8二(5-乙基己基噻吩基)苯并[1,2- b:3,3- b] dithiophene] [3-氟-2-[(2-乙基己基)羰基]噻吩并[3,4-b]噻吩基:(2,2'-((2Z,2'Z)-(((4,4 ,9,9-四(4-己基苯基)-4,9-二氢-s-茚满[1,2-b:5,6-b']二噻吩-2,7-二基)bis(4-((2 -乙基己基)氧基)噻吩-5,2-二基)双(亚甲基亚芳基))双(5,6-二氟-3-氧代-2-3,二氢-1 H-茚2,1-二亚乙基))二甲基腈(PTB7-Th:IEICO-4F)OSC。非富勒烯OSC的功率转换效率从8.84%提高到10.12%。根据对控制装置和改进型装置进行的比较研究,分析了HTL改性对纳米形态结构和光物理性质的影响。化学掺杂和双层策略的使用优化了HTL的能级排列,纳米形态,空穴迁移率和功函,从而显着降低了漏电流和复合损失。我们的工作表明,掺杂HTL和掺入G-QDs层以构成双层HTL是制造高性能非富勒烯聚合物太阳能电池的有前途的策略
更新日期:2020-03-29
down
wechat
bug