当前位置: X-MOL 学术Nat. Clim. Change › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic
Nature Climate Change ( IF 29.6 ) Pub Date : 2020-03-30 , DOI: 10.1038/s41558-020-0734-z
Youmi Oh , Qianlai Zhuang , Licheng Liu , Lisa R. Welp , Maggie C. Y. Lau , Tullis C. Onstott , David Medvigy , Lori Bruhwiler , Edward J. Dlugokencky , Gustaf Hugelius , Ludovica D’Imperio , Bo Elberling

Methane emissions from organic-rich soils in the Arctic have been extensively studied due to their potential to increase the atmospheric methane burden as permafrost thaws1,2,3. However, this methane source might have been overestimated without considering high-affinity methanotrophs (HAMs; methane-oxidizing bacteria) recently identified in Arctic mineral soils4,5,6,7. Herein we find that integrating the dynamics of HAMs and methanogens into a biogeochemistry model8,9,10 that includes permafrost soil organic carbon dynamics3 leads to the upland methane sink doubling (~5.5 Tg CH4 yr−1) north of 50 °N in simulations from 2000–2016. The increase is equivalent to at least half of the difference in net methane emissions estimated between process-based models and observation-based inversions11,12, and the revised estimates better match site-level and regional observations5,7,13,14,15. The new model projects doubled wetland methane emissions between 2017–2100 due to more accessible permafrost carbon16,17,18. However, most of the increase in wetland emissions is offset by a concordant increase in the upland sink, leading to only an 18% increase in net methane emission (from 29 to 35 Tg CH4 yr−1). The projected net methane emissions may decrease further due to different physiological responses between HAMs and methanogens in response to increasing temperature19,20.



中文翻译:

在温暖的北极地区,由于微生物甲烷氧化而减少的甲烷净排放量

由于多年冻土层1,2,3解冻有可能增加大气中的甲烷负荷,因此对北极富含有机物的土壤中的甲烷排放进行了广泛研究。但是,如果不考虑最近在北极矿物土壤4,5,6,7中鉴定出的高亲和性甲烷营养生物(HAMs;甲烷氧化细菌),可能会高估了这种甲烷源。在这里,我们发现将HAMs和产甲烷菌的动力学整合到包括多年冻土土壤有机碳动力学3的生物地球化学模型8,9,10中会导致陆地甲烷汇增加一倍(〜5.5 Tg CH 4  yr -1)在2000–2016年的模拟中位于50°N以北。增加相当于至少有一半是基于过程的模型和基于观察的反转之间的预计净甲烷排放量的差异11,12和修订预算更好地匹配站点级和区域观测5 7 13,14, 15。新模型预测,由于更容易获得永久冻土碳16,17,18,在2017–2100年间湿地甲烷排放量将增加一倍。但是,湿地排放量的大部分增加被高地水槽的一致增加所抵消,导致甲烷净排放量仅增加18%(从29 Tg CH 3降至35 Tg CH 4  yr -1)。预测的甲烷净排放量可能会进一步降低,这是由于HAM和产甲烷菌对温度升高的反应不同,生理反应不同19,20

更新日期:2020-04-24
down
wechat
bug