当前位置: X-MOL 学术J. Electroanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Giant “molecular capacitor” arrays - portable sensors to determine ionizable compounds
Journal of Electroanalytical Chemistry ( IF 4.1 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.jelechem.2020.114108
Xiao-Jing Han , Xiao-Feng Ji , Qing Zhang , Jia-Wei Sun , Pei-Xia Sun , Wen-Jin Pan , Jian Wang , Chun Yang

Abstract Portable sensors have been developed for the determination of ionizable compounds based on molecularly imprinted polymers (MIPs). These polymers are charged due to the utilization of ionizable monomers such as diallylamine and sodium vinyl sulfonate (SVS). Mediated by the charged templates, imprinted sites with specific shapes and charge distributions were build in the MIPs. At the time of molecular recognition, the imprinted sites were reoccupied by the templates, making the polymer charges neutralized. This procedure led to significant permittivity changing and contributed much to device sensitivity. The capacitive signal drop of 1 million molecules (~1.66 × 10−18 mol) adds up to >10−12 f, which is detectable to a current portable multimeter. At the same time interferent components were expediently washed off because of poor affinities to an MIP. Consequently a handheld LCR (Inductance Capacitance Resistance) meter was used to successfully monitor the molecular recognition signals. High sensitive and selective analysis has been achieved for three exemplified compounds, i.e. aspirin, propranolol hydrochloride, and glyphosate, with linear ranges as 5.50 × 10−13–10−9 mol·L−1, 3.39 × 10−13–10−6 mol·L−1 and 5.89 × 10−16–10−6 mol·L−1. Meanwhile the related detection limits are 1.68 × 10−13 mol·L−1, 3.02 × 10−13 mol·L−1 and 1.94 × 10−16 mol·L−1. The more charges the template possesses, the more sensitive the sensor is.

中文翻译:

巨大的“分子电容器”阵列——用于确定可电离化合物的便携式传感器

摘要 便携式传感器已开发用于测定基于分子印迹聚合物 (MIP) 的可电离化合物。由于使用了可离子化的单体,例如二烯丙胺和乙烯基磺酸钠 (SVS),这些聚合物是带电的。在带电模板的调解下,在 MIP 中构建了具有特定形状和电荷分布的印记位点。在分子识别时,印迹位点被模板重新占据,使聚合物电荷中和。此过程导致显着的介电常数变化并对器件灵敏度做出很大贡献。100 万个分子 (~1.66 × 10−18 mol) 的电容信号下降加起来 >10−12 f,可以用当前的便携式万用表检测到。同时,由于与 MIP 的亲和力差,可以方便地洗掉干扰成分。因此,手持式 LCR(电感电容电阻)计被用于成功监测分子识别信号。对阿司匹林、盐酸普萘洛尔和草甘膦这三种示例化合物实现了高灵敏度和选择性分析,线性范围分别为 5.50 × 10-13-10-9 mol·L-1、3.39 × 10-13-10-6 mol·L−1 和 5.89 × 10−16–10−6 mol·L−1。同时相关检出限为1.68×10-13 mol·L-1、3.02×10-13 mol·L-1和1.94×10-16 mol·L-1。模板拥有的电荷越多,传感器就越灵敏。对阿司匹林、盐酸普萘洛尔和草甘膦这三种示例化合物实现了高灵敏度和选择性分析,线性范围分别为 5.50 × 10-13-10-9 mol·L-1、3.39 × 10-13-10-6 mol·L−1 和 5.89 × 10−16–10−6 mol·L−1。同时相关检出限为1.68×10-13 mol·L-1、3.02×10-13 mol·L-1和1.94×10-16 mol·L-1。模板拥有的电荷越多,传感器就越灵敏。对阿司匹林、盐酸普萘洛尔和草甘膦这三种示例化合物实现了高灵敏度和选择性分析,线性范围分别为 5.50 × 10-13-10-9 mol·L-1、3.39 × 10-13-10-6 mol·L−1 和 5.89 × 10−16–10−6 mol·L−1。同时相关检出限为1.68×10-13 mol·L-1、3.02×10-13 mol·L-1和1.94×10-16 mol·L-1。模板拥有的电荷越多,传感器就越灵敏。
更新日期:2020-05-01
down
wechat
bug