当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Membrane protein dimerization in cell-derived lipid membranes measured by FRET with MC simulations
Biophysical Journal ( IF 3.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.bpj.2020.03.011
Jan Škerle 1 , Jana Humpolíčková 2 , Nicholas Johnson 2 , Petra Rampírová 2 , Edita Poláchová 3 , Monika Fliegl 2 , Jan Dohnálek 4 , Anna Suchánková 2 , David Jakubec 2 , Kvido Strisovsky 2
Affiliation  

Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.

中文翻译:

通过 FRET 与 MC 模拟测量的细胞衍生脂质膜中的膜蛋白二聚化

许多膜蛋白被认为是二聚体或更高的寡聚体,但测量脂质膜中的膜蛋白寡聚化尤其具有挑战性。Förster 共振能量转移 (FRET) 和荧光互相关光谱是非侵入性的光学选择方法,已应用于分析单跨膜蛋白的二聚化。然而,这种二维系统固有的影响,例如多面体跨膜蛋白的排除体积、邻近 FRET 和荧光团偶极子的旋转扩散,使 FRET 数据的解释复杂化,并且通常没有被考虑在内。在这里,使用 FRET 和荧光互相关光谱,我们介绍了一种测量表面蛋白质密度和估计表观 Förster 半径的方法,我们使用 FRET 数据的蒙特卡罗模拟来解释在受限二维环境中发生的邻近 FRET 效应。然后我们使用 FRET 分析人菱形蛋白酶 RHBDL2 在巨大质膜囊泡中的二聚化。我们在人类细胞的巨大质膜囊泡中没有发现 RHBDL2 稳定寡聚体的证据,即使浓度大大超过内源性表达水平。这表明菱形跨膜核心本质上是单体。我们的研究结果将用于 FRET 和荧光相关光谱分析细胞衍生脂质膜中跨膜蛋白的寡聚化的应用。然后我们使用 FRET 分析人菱形蛋白酶 RHBDL2 在巨大质膜囊泡中的二聚化。我们在人类细胞的巨大质膜囊泡中没有发现 RHBDL2 稳定寡聚体的证据,即使浓度大大超过内源性表达水平。这表明菱形跨膜核心本质上是单体。我们的研究结果将用于 FRET 和荧光相关光谱分析细胞衍生脂质膜中跨膜蛋白的寡聚化的应用。然后我们使用 FRET 分析人菱形蛋白酶 RHBDL2 在巨大质膜囊泡中的二聚化。我们在人类细胞的巨大质膜囊泡中没有发现 RHBDL2 稳定寡聚体的证据,即使浓度大大超过内源性表达水平。这表明菱形跨膜核心本质上是单体。我们的研究结果将用于 FRET 和荧光相关光谱分析细胞衍生脂质膜中跨膜蛋白的寡聚化的应用。这表明菱形跨膜核心本质上是单体。我们的研究结果将用于 FRET 和荧光相关光谱分析细胞衍生脂质膜中跨膜蛋白的寡聚化的应用。这表明菱形跨膜核心本质上是单体。我们的研究结果将用于 FRET 和荧光相关光谱分析细胞衍生脂质膜中跨膜蛋白的寡聚化的应用。
更新日期:2020-04-01
down
wechat
bug