当前位置: X-MOL 学术J. Sound Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system
Journal of Sound and Vibration ( IF 4.3 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.jsv.2020.115346
Youliang Jiang , Chunsheng Song , Chenmiao Ding , Binghui Xu

Abstract The traditional linear vibration isolation system has the effect of vibration isolation only on the condition that the excitation frequency is more than 2 ω n . Quasi-zero stiffness vibration isolation system has the characteristic of “high static and low dynamic”, which can effectively solve this problem. When subjected to static load, the system has high stiffness to provide enough support force for itself. When the system is subjected to dynamic load, its stiffness is approximately zero, which enlarges the frequency bandwidth of vibration isolation to achieve the performance of low-frequency vibration isolation. At present, most vibration isolation systems based on quasi-zero stiffness theory have some problems, such as fixed mass of isolated object and narrow range of quasi-zero stiffness. Therefore, on the basis of electromagnetic technology and air spring technology, a magnetic-air hybrid quasi-zero stiffness vibration isolation system is designed in this paper. The air spring is used to adjust positive stiffness, which provides a stable and variable support force for the whole system. Electromagnetic spring designed by electromagnetic technology is adopted to adjust negative stiffness. Under the interaction of negative stiffness and positive stiffness, the dynamic stiffness of the whole system is close to zero. This paper then analyzes the static property of the quasi-zero stiffness vibration isolation system, and studies the parameter relationship between positive stiffness component and negative stiffness component. Finally, the effect of vibration isolation is verified by experiments.

中文翻译:

磁气混合准零刚度隔振系统设计

摘要 传统的线性隔振系统只有在激励频率大于2 ω n 的条件下才具有隔振效果。准零刚度隔振系统具有“高静低动”的特点,可以有效解决这一问题。当承受静载荷时,系统具有很高的刚度,可以为自身提供足够的支撑力。当系统承受动载荷时,其刚度近似为零,从而扩大了隔振的频带宽,达到了低频隔振的性能。目前,大多数基于准零刚度理论的隔振系统都存在被隔离物体质量固定、准零刚度范围窄等问题。所以,本文在电磁技术和空气弹簧技术的基础上,设计了一种磁气混合准零刚度隔振系统。空气弹簧用于调节正刚度,为整个系统提供稳定可变的支撑力。采用电磁技术设计的电磁弹簧调节负刚度。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。本文设计了一种磁气混合准零刚度隔振系统。空气弹簧用于调节正刚度,为整个系统提供稳定可变的支撑力。采用电磁技术设计的电磁弹簧调节负刚度。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。本文设计了一种磁气混合准零刚度隔振系统。空气弹簧用于调节正刚度,为整个系统提供稳定可变的支撑力。采用电磁技术设计的电磁弹簧调节负刚度。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。空气弹簧用于调节正刚度,为整个系统提供稳定可变的支撑力。采用电磁技术设计的电磁弹簧调节负刚度。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。空气弹簧用于调节正刚度,为整个系统提供稳定可变的支撑力。采用电磁技术设计的电磁弹簧调节负刚度。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。在负刚度和正刚度的相互作用下,整个系统的动态刚度接近于零。然后分析了准零刚度隔振系统的静态特性,研究了正刚度分量和负刚度分量之间的参数关系。最后通过实验验证了隔振效果。
更新日期:2020-07-01
down
wechat
bug