当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage
Journal of Energy Storage ( IF 9.4 ) Pub Date : 2020-03-30 , DOI: 10.1016/j.est.2019.101167
H. Mhiri , A. Jemni , H. Sammouda

Paraffin wax is considered as stable and environmentally convivial phase change materials (PCM) for thermal energy storage systems (TESS). However they suffer to low thermal conductivity which reduced the rate of heat storage and energy conversion, as well as the leakage of materials during the melting process. In this paper, nanocomposites consisting of a paraffin / graphite mixture embedded in carbon foam by vacuum impregnation were prepared in the aim to develop a new formulation of phase change material (PCM) with excellent shape stabilization, thermal conductivity improved and exceptional thermal reliability. Different tests such as Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermal conductivity analyzer are proposed to determine thermal properties of the composite PCM. After the validation of numerical model with experimental results, the numerical analysis is extended to investigate the melting process of the composite PCM under constant temperature. A regular three-dimensional (3D) foam structure was designed. The effects of carbon foam porosity and nanoparticles’ volume fraction on the thermal behavior of composite PCMs were investigated. The results show that the addition of both graphite and carbon foam to paraffin wax enhance the thermal properties and prevent the leakage of the melted paraffin which preserve its stable thermal performance. This is due to the conductive network path created by the 3D structure of the carbon foam and the percolation of graphite, which might facilitate an increased phase change speed of composite PCM.



中文翻译:

储热用复合材料(nanoPCM /碳泡沫)熔融过程的数值和实验研究

石蜡被认为是用于热能存储系统(TESS)的稳定且对环境有利的相变材料(PCM)。然而,它们的热导率低,这降低了热存储和能量转换的速度,以及在熔化过程中材料的泄漏。在本文中,制备了由通过真空浸渍嵌入碳泡沫中的石蜡/石墨混合物组成的纳米复合材料,目的是开发一种新的相变材料(PCM)配方,该相变材料具有出色的形状稳定性,导热性和优异的热可靠性。提出了诸如傅立叶变换红外光谱,差示扫描量热法和热导率分析仪之类的不同测试来确定复合PCM的热性能。在用实验结果验证了数值模型之后,扩展了数值分析以研究复合PCM在恒定温度下的熔融过程。设计了规则的三维(3D)泡沫结构。研究了碳泡沫的孔隙率和纳米颗粒的体积分数对复合材料PCM热性能的影响。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。数值分析扩展到研究复合PCM在恒定温度下的熔化过程。设计了规则的三维(3D)泡沫结构。研究了碳泡沫的孔隙率和纳米颗粒的体积分数对复合材料PCM热性能的影响。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。数值分析扩展到研究复合PCM在恒定温度下的熔化过程。设计了规则的三维(3D)泡沫结构。研究了碳泡沫的孔隙率和纳米颗粒的体积分数对复合材料PCM热性能的影响。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。研究了碳泡沫的孔隙率和纳米颗粒的体积分数对复合材料PCM热性能的影响。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。研究了碳泡沫的孔隙率和纳米颗粒的体积分数对复合材料PCM热性能的影响。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。结果表明,向石蜡中同时添加石墨和碳泡沫可增强热性能,并防止熔融石蜡泄漏,从而保持其稳定的热性能。这是由于碳泡沫的3D结构和石墨的渗滤产生的导电网络路径,这可能有助于提高复合材料PCM的相变速度。

更新日期:2020-03-30
down
wechat
bug