当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular simulation of the adsorption-induced deformation during CO2 sequestration in shale and coal carbon slit pores
Fuel ( IF 6.7 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.fuel.2020.117693
Hongyang Zhang , Rui Diao , Hing Hao Chan , Masood Mostofi , Brian Evans

Abstract The swelling induced by CO2 adsorption is a major concern for CO2 sequestration in coal and shale. Deeper insight into the mechanism of adsorption-induced swelling is essential for the CO2 geological storage. In this work, we have used grand canonical Monte Carlo simulation to study the adsorption-induced deformation strain based on the deformable organic carbon slit pore models. In particular, we studied the microstructure and distribution of the adsorbed molecules to obtain the adsorption location effect on swelling. The results showed the deformations of both swelling and shrinkage are sensitive to the pore size. The pores below 0.55 nm have no deformation. The 0.55–0.6 nm pores show the maximum swelling, corresponding to the largest adsorption density. The shrinkage occurs in the 0.65–0.80 nm range depending on pressure and temperature. When the pressure increases, the swelling is enhanced while the shrinkage is mitigated, while the pore size for the maximum swelling or shrinkage remains the same. When the temperature increases, both swelling and shrinkage decrease due to decreased adsorption density. The results showed the CO2 molecules adsorbed in different locations exert heterogeneous solvation pressures across the pore. Generally, the molecules close to pore walls are parallel, tending to swell the pore, which plays a dominant role in the deformation. However, when the pore size increases, some molecules exert a negative solvation pressure, with inclined and vertical orientations, tending to contract the pore although swelling is the total deformation.

中文翻译:

页岩和煤碳狭缝孔隙中 CO2 封存过程中吸附诱导变形的分子模拟

摘要 CO2 吸附引起的膨胀是煤和页岩中 CO2 封存的主要问题。深入了解吸附诱导膨胀的机制对于 CO2 地质储存至关重要。在这项工作中,我们使用了正则蒙特卡罗模拟来研究基于可变形有机碳狭缝孔隙模型的吸附诱导变形应变。特别是,我们研究了吸附分子的微观结构和分布,以获得吸附位置对溶胀的影响。结果表明,膨胀和收缩的变形都对孔径敏感。0.55nm以下的孔没有变形。0.55-0.6 nm 的孔显示出最大的溶胀,对应于最大的吸附密度。收缩发生在 0.65-0 之间。80 nm 范围取决于压力和温度。当压力增加时,膨胀增强而收缩减小,而最大膨胀或收缩的孔径保持不变。当温度升高时,由于吸附密度降低,溶胀和收缩均减小。结果表明,吸附在不同位置的 CO2 分子会在整个孔隙中施加异质溶剂化压力。通常,靠近孔壁的分子是平行的,倾向于使孔膨胀,这在变形中起主导作用。然而,当孔径增加时,一些分子施加负溶剂化压力,倾斜和垂直取向,尽管膨胀是总变形,但倾向于收缩孔。膨胀增大而收缩减小,而最大膨胀或收缩的孔径保持不变。当温度升高时,由于吸附密度降低,溶胀和收缩均减小。结果表明,吸附在不同位置的 CO2 分子会在整个孔隙中施加异质溶剂化压力。通常,靠近孔壁的分子是平行的,倾向于使孔膨胀,这在变形中起主导作用。然而,当孔径增加时,一些分子施加负溶剂化压力,倾斜和垂直取向,尽管膨胀是总变形,但倾向于收缩孔。膨胀增大而收缩减小,而最大膨胀或收缩的孔径保持不变。当温度升高时,由于吸附密度降低,溶胀和收缩均减小。结果表明,吸附在不同位置的 CO2 分子会在整个孔隙中施加异质溶剂化压力。通常,靠近孔壁的分子是平行的,倾向于使孔膨胀,这在变形中起主导作用。然而,当孔径增加时,一些分子施加负溶剂化压力,倾斜和垂直取向,尽管膨胀是总变形,但倾向于收缩孔。由于吸附密度降低,膨胀和收缩均减少。结果表明,吸附在不同位置的 CO2 分子会在整个孔隙中施加异质溶剂化压力。通常,靠近孔壁的分子是平行的,倾向于使孔膨胀,这在变形中起主导作用。然而,当孔径增加时,一些分子施加负溶剂化压力,倾斜和垂直取向,尽管膨胀是总变形,但倾向于收缩孔。由于吸附密度降低,膨胀和收缩均减少。结果表明,吸附在不同位置的 CO2 分子会在整个孔隙中施加异质溶剂化压力。通常,靠近孔壁的分子是平行的,倾向于使孔膨胀,这在变形中起主导作用。然而,当孔径增加时,一些分子施加负溶剂化压力,倾斜和垂直取向,尽管膨胀是总变形,但倾向于收缩孔。
更新日期:2020-07-01
down
wechat
bug