当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sandwich-like dual carbon layers coated NiO hollow spheres with superior lithium storage performances
Electrochimica Acta ( IF 5.5 ) Pub Date : 2020-03-29 , DOI: 10.1016/j.electacta.2020.136121
Qingmeng Gan , Buchen Wu , Ning Qin , Jiali Chen , Wen Luo , Dejun Xiao , Jie Feng , Weilong Liu , Youhuan Zhu , Peisen Zhang

Transition metal oxides (e.g. NiO) have been considered as promising high-capacity anode in lithium ion batteries (LIBs). However, the low electronic conductivity and huge volume change during cycling lead to rapid capacity fading and poor rate capability. To solve those drawbacks, we design a sandwich-like dual carbon layers coated hollow structured NiO (C@NiO@NC). The NiO nanosheets are anchored on the surface of hollow carbon nanospheres and then coated with N-doped porous carbon layer, which confine them between two carbon shells. Such hierarchical architecture with high surface area increases the contact between the electrode and electrolyte, resulting in decreased Li+ diffusion pathway. Moreover, the dual carbon layers enhance the electronic conductivity of C@NiO@NC and effectively buffer the volume changes of NiO during cycling. Therefore, this sample delivers a high capacity (1189 mA h g−1 at 100 mA g−1), superior rate capability (420 mA h g−1 at ultrahigh rate of 10000 mA g−1) and outstanding cycling stability (96.1% at 1000 mA g−1 after 1000 cycles) when used as LIBs anode. The density functional theoretical calculation further proves the enhanced electronic conductivity and more energetic favorable capability of C@NiO@NC. This facile method can be extended to other transition-metal oxides with superior electrochemical performance.



中文翻译:

三明治状的双碳层包覆NiO空心球,具有出色的锂存储性能

过渡金属氧化物(例如NiO)已被认为是锂离子电池(LIB)中有前途的高容量阳极。然而,低电导率和循环期间的巨大体积变化导致快速的容量衰减和差的速率容量。为了解决这些缺点,我们设计了一种夹心状的双碳层涂层空心结构NiO(C @ NiO @ NC)。NiO纳米片被锚固在中空碳纳米球的表面,然后涂有N掺杂的多孔碳层,将其限制在两个碳壳之间。这种具有高表面积的分层体系结构可增加电极与电解质之间的接触,从而降低Li +扩散途径。此外,双碳层增强了C @ NiO @ NC的电子导电性,并有效地缓冲了循环过程中NiO的体积变化。因此,该样本提供了一个大容量(1189毫安汞柱-1在100mA克-1),优异的倍率性能(420毫安汞柱-1处的万毫安克超高速率-1)和出色的循环稳定性(在1000 96.1%用作LIB阳极时1000循环后的mA g -1)。密度泛函理论计算进一步证明了C @ NiO @ NC的增强的电导率和更高的能量有利能力。这种简便的方法可以扩展到具有优异电化学性能的其他过渡金属氧化物。

更新日期:2020-03-29
down
wechat
bug