当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and characterization of apatite La9.8Si5.7Mg0.3O26±δ-based micro-tubular solid oxide fuel cells
Journal of Power Sources ( IF 8.1 ) Pub Date : 2020-03-30 , DOI: 10.1016/j.jpowsour.2020.228072
Sea-Fue Wang , Yung-Fu Hsu , Pu Hsia , Wei-Kai Hung , Piotr Jasinski

In this study, electrolyte-supported (Cell A) and anode-supported (Cell B) micro-tubular solid oxide fuel cells (SOFCs) based on the La9.8Si5.7Mg0.3O26±δ (LSMO) electrolyte is built through an extrusion and dip-coating processes. The formulations and process conditions for these cells are established and optimized. Both cell configurations show no visible delamination or cracking, and reaction zones and inter-diffusion of any species are absent at the interfaces of the multilayer structures. The micro-tubes LSMO and LSMO-NiO have a high flexural strength of ~70 MPa. Cell B with a 3.33 mm outer diameter, a 12 μm LSMO electrolyte layer, a ~300 μm LSMO-NiO functional anode layer, a 9 μm NiO current-collector layer, and a 44 μm La0.6Sr0.4Co0.2Fe0.8O3-δ cathode layer has superior electrochemical performances than does Cell A. The polarization resistance (Rp) value for Cell B accounts for 67.6% and 50.5% of the total resistance (Rt) value at 700 °C and 895 °C, respectively, suggesting that Rp dominates at low temperatures and ohmic resistance (Ro) and Rp values are equally important at high temperatures. Cell B's open-circuit voltages (OCVs) are slightly below the theoretical value due to poor sealing of cells. The maximum power densities (MPDs) of Cell B, increase with increasing operating temperature and are 0.12, 0.24, and 0.27 W cm−2 at 750 °C, 850 °C, and 895 °C, respectively. Compared to Cell A, Cell B displays lower OCV values but higher MPD (0.27 W cm−2 vs. 0.06 W cm−2 at 895 °C) due to its significantly lower Ro value, mainly due to the thin layer of LSMO electrolytes.



中文翻译:

磷灰石La 9.8 Si 5.7 Mg 0.3 O 26±δ基微管固体氧化物燃料电池的设计与表征

在这项研究中,基于La 9.8 Si 5.7 Mg 0.3 O 26±δ(LSMO)电解质的电解质支持(电池A)和阳极支持(电池B)微管固体氧化物燃料电池(SOFC)是通过挤出和浸涂工艺。建立并优化了这些电池的配方和工艺条件。两种单元结构均未显示可见的分层或破裂,并且在多层结构的界面处没有任何种类的反应区和相互扩散。LSMO和LSMO-NiO微管具有约70 MPa的高抗弯强度。电池B,具有3.33毫米的外径,12μm的LSMO电解质层,〜300μm的LSMO-NiO功能性阳极层,9μm的NiO集电器层和44μm的La0.6 Sr 0.4 Co 0.2 Fe 0.8 O3 阴极层的电化学性能优于电池A。电池B的极化电阻(R p)值分别占电池总电阻(R t)值的67.6%和50.5%。分别为700°C和895°C,这表明R p在低温下占主导地位,而欧姆电阻(R o)和R p高温下的数值同样重要。由于电池密封不良,电池B的开路电压(OCV)略低于理论值。电池B的最大功率密度(MPD)随着工作温度的升高而增加,在750°C,850°C和895°C时分别为0.12、0.24和0.27 W cm -2。与电池A相比,电池B的OCV值较低,但MPD较高(在895°C时为0.27 W cm -2与0.06 W cm -2),这是因为其R o值明显较低,这主要是由于LSMO电解质薄。

更新日期:2020-03-30
down
wechat
bug