当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of Biodegradation on Polar Compounds in Crude Oil: Comparative Simulation of Biodegradation from Two Aerobic Bacteria Using Ultrahigh-Resolution Mass Spectrometry
Energy & Fuels ( IF 5.2 ) Pub Date : 2020-03-30 , DOI: 10.1021/acs.energyfuels.0c00030
Yuan Liu 1, 2, 3 , Yun Yang Wan 1, 3, 4 , Yingjia Zhu 1, 2, 3 , Caisheng Fei 1, 3 , Zidi Shen 3, 5 , Yuxi Ying 3, 5
Affiliation  

Biodegradation preference of single, identified bacterium is the basis of bioremediation and microbial enhanced oil recovery (MEOR). However, the impacts of different bacterial species on the biodegradation of polar compounds are unclear. Accordingly, in this study, we performed a 90-day biodegradation simulation of crude oil using Pseudomonas aeruginosa XJ16 and Acinetobacter lwoffii XJ19. Biodegraded oils were characterized by negative-ion electrospray source ionization ESI (−), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and gas chromatography–mass spectrometry (GC-MS). We aimed to study the differential biodegradation and mechanism of nitrogen- and oxygen-containing polar compounds using two strains that showed different abilities to produce and utilize polar compounds. P. aeruginosa XJ16 could easily biodegrade n-alkanes and n-alkyl cyclohexanes, whereas A. lwoffii XJ19 was able to utilize complex compounds, such as steranes and hopanes. Compared with P. aeruginosa XJ16, A. lwoffii XJ19 biodegraded more N1 class and produced more intermediate products (N1O1 and N1O2 classes). The efficiency of biodegradation of O1 varied with the type of microorganism. Intermediate products, such as alkylphenols, alkylnaphthols naphthols, and phenyl phenols, were produced by P. aeruginosa XJ16, whereas A. lwoffii XJ19 biodegraded these products. After biodegradation, the saturated fatty acids in Pa-90 and Al-90 decreased through the monoterminal, diterminal, and subterminal oxidation of n-alkane. However, naphthenic acids with 1–6 rings produced from terminal oxidation of naphthenes or dearomatization of aromatic hydrocarbons increased. Overall, these findings provided key insights into the biodegradation of polar compounds by different bacterial species.

中文翻译:

生物降解对原油中极性化合物的影响:使用超高分辨率质谱法对两种好氧细菌进行生物降解的比较模拟

单个已鉴定细菌的生物降解偏好是生物修复和微生物强化采油(MEOR)的基础。但是,尚不清楚不同细菌种类对极性化合物生物降解的影响。因此,在这项研究中,我们使用铜绿假单胞菌XJ16和卢氏不动杆菌进行了90天的原油生物降解模拟XJ19。生物降解油的特征在于负离子电喷雾源电离ESI(-),傅立叶变换离子回旋共振质谱(FT-ICR MS)和气相色谱-质谱(GC-MS)。我们的目的是使用两种显示出不同的极性化合物生产和利用能力的菌株,研究含氮和氧的极性化合物的差异生物降解及其机理。铜绿假单胞菌XJ16可以很容易地将构烷烃和烷基环己烷生物降解,而卢旺氏假单胞菌XJ19能够利用诸如甾烷和hop烷的复杂化合物。与铜绿假单胞菌XJ16,A。lwoffii相比XJ19生物降解了更多的N1类,并生产了更多的中间产品(N1O1和N1O2类)。O1的生物降解效率随微生物的类型而变化。铜绿假单胞菌XJ16生产中间产物,例如烷基酚,烷基萘,萘酚和苯基苯酚,而A. lwoffii XJ19对这些产物进行生物降解。生物降解后,将饱和脂肪酸以Pa-90和Al-90通过monoterminal,diterminal,和近顶氧化降低Ñ-烷烃。但是,环烷烃的末端氧化或芳烃的脱芳烃反应产生的具有1–6个环的环烷酸有所增加。总体而言,这些发现为不同细菌物种对极性化合物的生物降解提供了重要的见识。
更新日期:2020-03-30
down
wechat
bug