当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecule Sensitive Optical Imaging and Monitoring Techniques-A Review of Applications in Micro-Process Engineering.
Micromachines ( IF 3.0 ) Pub Date : 2020-03-28 , DOI: 10.3390/mi11040353
Marcel Nachtmann 1 , Julian Deuerling 1 , Matthias Rädle 1
Affiliation  

This paper provides an overview of how molecule-sensitive, spatially-resolved technologies can be applied for monitoring and measuring in microchannels. The principles of elastic light scattering, fluorescence, near-infrared, mid-infrared, and Raman imaging, as well as combination techniques, are briefly presented, and their advantages and disadvantages are explained. With optical methods, images can be acquired both scanning and simultaneously as a complete image. Scanning technologies require more acquisition time, and fast moving processes are not easily observable. On the other hand, molecular selectivity is very high, especially in Raman and mid-infrared (MIR) scanning. For near-infrared (NIR) images, the entire measuring range can be simultaneously recorded with indium gallium arsenide (InGaAs) cameras. However, in this wavelength range, water is the dominant molecule, so it is sometimes necessary to use complex learning algorithms that increase the preparation effort before the actual measurement. These technologies excite molecular vibrations in a variety of ways, making these methods suitable for specific products. Besides measurements of the fluid composition, technologies for particle detection are of additional importance. With scattered light techniques and evaluation according to the Mie theory, particles in the range of 0.2-1 mm can be detected, and fast growth processes can be observed. Local multispectral measurements can also be carried out with fiber optic-coupled systems through small probe heads of approximately 1 mm diameter.

中文翻译:

分子敏感的光学成像和监测技术-微工艺工程中的应用综述。

本文概述了如何将分子敏感的空间分辨技术应用于微通道的监测和测量。简要介绍了弹性光散射,荧光,近红外,中红外和拉曼成像的原理以及组合技术,并说明了它们的优缺点。使用光学方法,可以扫描并同时获取完整图像。扫描技术需要更多的采集时间,而且快速移动的过程也不容易观察到。另一方面,分子选择性非常高,特别是在拉曼和中红外(MIR)扫描中。对于近红外(NIR)图像,可以使用砷化铟镓(InGaAs)摄像机同时记录整个测量范围。但是在这个波长范围内 水是主要分子,因此有时有必要使用复杂的学习算法来增加实际测量之前的准备工作。这些技术以多种方式激发分子振动,从而使这些方法适用于特定产品。除了测量流体成分外,用于粒子检测的技术也非常重要。使用散射光技术并根据Mie理论进行评估,可以检测到0.2-1 mm范围内的颗粒,并且可以观察到快速的生长过程。光纤耦合系统也可以通过直径约1 mm的小探头进行局部多光谱测量。因此有时有必要使用复杂的学习算法来增加实际测量之前的准备工作。这些技术以多种方式激发分子振动,从而使这些方法适用于特定产品。除了测量流体成分外,用于粒子检测的技术也非常重要。使用散射光技术并根据Mie理论进行评估,可以检测到0.2-1 mm范围内的颗粒,并且可以观察到快速的生长过程。光纤耦合系统也可以通过直径约1 mm的小探头进行局部多光谱测量。因此有时有必要使用复杂的学习算法来增加实际测量之前的准备工作。这些技术以多种方式激发分子振动,从而使这些方法适用于特定产品。除了测量流体成分外,用于粒子检测的技术也非常重要。使用散射光技术并根据Mie理论进行评估,可以检测到0.2-1 mm范围内的颗粒,并且可以观察到快速的生长过程。光纤耦合系统也可以通过直径约1 mm的小探头进行局部多光谱测量。除了测量流体成分外,用于粒子检测的技术也非常重要。使用散射光技术并根据Mie理论进行评估,可以检测到0.2-1 mm范围内的颗粒,并且可以观察到快速的生长过程。光纤耦合系统也可以通过直径约1 mm的小探头进行局部多光谱测量。除了测量流体成分外,用于粒子检测的技术也非常重要。使用散射光技术并根据Mie理论进行评估,可以检测到0.2-1 mm范围内的颗粒,并且可以观察到快速的生长过程。光纤耦合系统也可以通过直径约1 mm的小探头进行局部多光谱测量。
更新日期:2020-04-20
down
wechat
bug