当前位置: X-MOL 学术Environ. Sci. Pollut. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical modelling of MS2 virus inactivation by Al/Fe-PILC-activated catalytic wet peroxide oxidation (CWPO).
Environmental Science and Pollution Research Pub Date : 2020-03-28 , DOI: 10.1007/s11356-020-08365-4
Eduardo Ibarguen-Mondragon 1 , Dolly Revelo-Romo 2 , Arsenio Hidalgo 3 , Hernán García 3 , Luis-Alejandro Galeano 4
Affiliation  

Abstract

Catalytic wet peroxide oxidation (CWPO) is a novel, alternative technology to conventional disinfection methods that are widely used to control microbial parameters in drinking water. To assess its effectiveness, new studies revealing the kinetics of MS2 coliphage inactivation by CWPO technology are required. This investigation therefore aimed to perform mathematical modelling of MS2 inactivation through CWPO technology activated by an Al/Fe-pillared clay catalyst (Al/Fe-PILC) in the presence of a synthetic surrogate of dissolved natural organic matter. The inactivation constant was obtained from two different statistical approaches, and the experimental data were better fitted to the pseudo-first-order Chick-Watson model in which the inactivation rate is constant. For this model, the maximum inactivation rate was k = 0.1648 min−1, which was achieved in the MS2-3 catalytic test using an initial mass ratio of peroxide to active iron (Feact) of 1.2 mg H2O2/mg Feact. To estimate the inactivation rate due to reactive oxygen species (ROS), we supposed that the inactivation constant depends on both ROS and Feact. In this case, the maximum inactivation rate due to ROS was kr = 2.4 × 10−9 min−1 (using 1.17 mg H2O2/mg Feact), which was achieved in the MS2-10 trial; both cases led to the conclusion that the optimal initial ratio of peroxide to active Fe in the catalyst in CWPO activated by Al/Fe-PILC was close to 1.2 mg H2O2/mg Feact. These kinetic studies showed that rapid inactivation takes place very early in the reaction, followed by slow inactivation during the remaining period of the recorded reaction time. This research revealed the strong potential of CWPO technology to improve microbiological parameters in drinking water due to the high catalytic performance in the heterogeneous Fenton reaction displayed by Fe sites incorporated in the Al/Fe-PILCs.



中文翻译:

Al / Fe-PILC活化的催化湿式过氧化物氧化(CWPO)灭活MS2病毒的数学模型。

摘要

催化湿式过氧化物氧化(CWPO)是一种新颖的替代传统消毒方法的技术,该方法广泛用于控制饮用水中的微生物参数。为了评估其有效性,需要进行新的研究来揭示通过CWPO技术灭活MS2噬菌体的动力学。因此,本研究旨在通过在溶解的天然有机物的合成替代物中,通过由Al / Fe桩状粘土催化剂(Al / Fe-PILC)活化的CWPO技术,对MS2失活进行数学建模。失活常数是通过两种不同的统计方法获得的,实验数据更适合于失活速率恒定的伪一阶Chick-Watson模型。对于此模型,最大失活率为k = 0.1648分钟-1,这是使用过氧化的初始质量比活性铁(Fe在MS2-3催化试验实现行为1.2毫克H的)2 ö 2 /毫克铁动作。为了估计由于活性氧(ROS)引起的失活速率,我们认为失活常数取决于ROS和Fe作用。在这种情况下,由ROS引起的最大灭活速率为k r  = 2.4×10 -9  min -1(使用1.17 mg H 2 O 2 / mg Fe作用),这是在MS2-10试用版中实现的;两个LED的结论是,过氧化物与铁活性在CWPO催化剂中的最佳初始比活性的Al / Fe基PILC箱子接近1.2毫克ħ 2 ö 2 /毫克铁动作。这些动力学研究表明,快速失活发生在反应的早期,随后在所记录的反应时间的剩余时间内缓慢失活。这项研究揭示了CWPO技术在改善饮用水中微生物参数方面的强大潜力,这归因于Al / Fe-PILC中掺入的Fe位点在非均相Fenton反应中具有很高的催化性能。

更新日期:2020-03-28
down
wechat
bug