当前位置: X-MOL 学术Syst. Control Lett. › 论文详情
Stabilizability properties of a linearized water waves system
Systems & Control Letters ( IF 2.624 ) Pub Date : 2020-03-28 , DOI: 10.1016/j.sysconle.2020.104672
Pei Su; Marius Tucsnak; George Weiss

We consider the strong stabilization of small amplitude gravity water waves in a two dimensional rectangular domain. The control acts on one lateral boundary, by imposing the horizontal acceleration of the water along that boundary, as a multiple of a scalar input function u, times a given function h of the height along the active boundary. The state z of the system consists of two functions: the water level ζ along the top boundary, and its time derivative ζ̇. We prove that for suitable functions h, there exists a bounded feedback functional F such that the feedback u=Fz renders the closed-loop system strongly stable. Moreover, for initial states in the domain of the semigroup generator, the norm of the solution decays like (1+t)−16. Our approach uses a detailed analysis of the partial Dirichlet to Neumann and Neumann to Neumann operators associated to certain edges of the rectangular domain, as well as recent abstract non-uniform stabilization results by Chill et al. (2019).
更新日期:2020-03-28

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug