当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
From Information Theory Puzzles in Deletion Channels to Deniability in Quantum Cryptography
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-25 , DOI: arxiv-2003.11663
Arash Atashpendar

From the output produced by a memoryless deletion channel with a uniformly random input of known length $n$, one obtains a posterior distribution on the channel input. The difference between the Shannon entropy of this distribution and that of the uniform prior measures the amount of information about the channel input which is conveyed by the output of length $m$. We first conjecture on the basis of experimental data that the entropy of the posterior is minimized by the constant strings $\texttt{000}\ldots$, $\texttt{111}\ldots$ and maximized by the alternating strings $\texttt{0101}\ldots$, $\texttt{1010}\ldots$. We present related combinatorial theorems involving binary (sub/super)-sequences and prove the minimal entropy conjecture for single and double deletions using clustering techniques. We then prove the minimization conjecture in the asymptotic limit using results from hidden word statistics by showing how the analytic-combinatorial methods of Flajolet, Szpankowski and Vall\'ee, relying on generating functions, can be applied to resolve the case of fixed output length and $n\rightarrow\infty$. Next, we revisit the notion of deniability in quantum key exchange (QKE). We introduce and formalize the notion of coercer-deniable QKE. We then establish a connection between covert communication and deniability to propose DC-QKE, a simple and provably secure construction for coercer-deniable QKE. We relate deniability to fundamental concepts in quantum information theory and suggest a generic approach based on entanglement distillation for achieving information-theoretic deniability, followed by an analysis of other closely related results such as the relation between the impossibility of unconditionally secure quantum bit commitment and deniability. Finally, we present an efficient coercion-resistant and quantum-secure voting scheme, based on fully homomorphic encryption.
更新日期:2020-03-27

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug