当前位置: X-MOL 学术Cereb. Cortex › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lack of APP and APLP2 in GABAergic Forebrain Neurons Impairs Synaptic Plasticity and Cognition.
Cerebral Cortex ( IF 3.7 ) Pub Date : 2020-03-26 , DOI: 10.1093/cercor/bhaa025
Annika Mehr 1 , Meike Hick 2 , Susann Ludewig 3 , Michaela Müller 4 , Ulrike Herrmann 3 , Jakob von Engelhardt 4 , David P Wolfer 5, 6 , Martin Korte 3, 7 , Ulrike C Müller 1, 3
Affiliation  

Amyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer’s disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits in hippocampus-dependent spatial learning and memory tasks, as well as impairments in species-typic nesting and burrowing behaviors. Deficits at the behavioral level were associated with altered neuronal morphology and synaptic plasticity Long-Term Potentiation (LTP). Impaired basal synaptic transmission at the Schafer collateral/CA1 pathway, which was associated with altered compound excitatory/inhibitory synaptic currents and reduced action potential firing of CA1 pyramidal cells, points to a disrupted excitation/inhibition balance in DlxCre cDKOs. Together, these impairments may lead to hippocampal dysfunction. Collectively, our data reveal a crucial role of APP family proteins in inhibitory interneurons to maintain functional network activity.

中文翻译:

GABA 能前脑神经元中缺乏 APP 和 APLP2 会损害突触可塑性和认知。

淀粉样蛋白 β 前体蛋白 (APP) 是阿尔茨海默病发病机制的核心,但其生理功能仍未完全了解。以前的研究表明,APP 和密切相关的同系物 APLP2 在兴奋性前脑神经元中对脊柱密度、突触可塑性和行为具有重要的突触功能。在这里,我们表明 APP 在海马和皮层的几种中间神经元亚型中也广泛表达。为了解决 APP 在抑制性神经元中的功能作用,我们使用 DlxCre 小鼠在 GABA 能前脑神经元中生成了具有条件 APP/APLP2 双敲除 (cDKO) 的小鼠。这些 DlxCre cDKO 小鼠在依赖海马体的空间学习和记忆任务中表现出认知缺陷,以及物种典型的筑巢和挖洞行为受损。行为水平的缺陷与改变的神经元形态和突触可塑性长期增强 (LTP) 相关。Schafer 侧支/CA1 通路的基底突触传递受损,这与复合兴奋性/抑制性突触电流的改变和 CA1 锥体细胞的动作电位放电减少有关,表明 DlxCre cDKO 中的兴奋/抑制平衡被破坏。总之,这些损伤可能导致海马功能障碍。总的来说,我们的数据揭示了 APP 家族蛋白在抑制性中间神经元维持功能网络活动中的关键作用。这与复合兴奋性/抑制性突触电流的改变和 CA1 锥体细胞的动作电位放电降低有关,表明 DlxCre cDKO 中的兴奋/抑制平衡被破坏。总之,这些损伤可能导致海马功能障碍。总的来说,我们的数据揭示了 APP 家族蛋白在抑制性中间神经元维持功能网络活动中的关键作用。这与复合兴奋性/抑制性突触电流的改变和 CA1 锥体细胞的动作电位放电降低有关,表明 DlxCre cDKO 中的兴奋/抑制平衡被破坏。总之,这些损伤可能导致海马功能障碍。总的来说,我们的数据揭示了 APP 家族蛋白在抑制性中间神经元维持功能网络活动中的关键作用。
更新日期:2020-03-27
down
wechat
bug