当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robustness in spatially driven bistability in signaling systems.
Scientific Reports ( IF 3.8 ) Pub Date : 2020-03-27 , DOI: 10.1038/s41598-020-62412-1
Debora Tenenbaum 1, 2, 3 , Juan Ignacio Marrone 2, 4 , Hernán E Grecco 1, 5 , Alejandra C Ventura 2, 4
Affiliation  

Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been sufficiently explored. This work focuses on a previously described system which is composed of two monostable modules acting on different cellular compartments and sharing species through linear shuttling reactions. One of the two main purposes of this paper is to quantify the frequency of occurrence of bistability throughout the parameter space and to identify which parameters and in which value ranges control the emergence and the properties of bistability. We found that a very small fraction of the sampled parameter space produced a bistable response. Most importantly, shuttling parameters were among the most influential ones to control this property. The other goal of this paper is to simplify the same system as much as possible without losing compartment-induced bistability. This procedure provided a simplified model that still connects two monostable systems by a reduced set of linear shuttling reactions that circulates all the species around the two compartments. Bistable systems are one of the main building blocks of more complex behaviors such as oscillations, memory, and digitalization. Therefore, we expect that the proposed minimal system provides insight into how these behaviors can arise from compartmentalization.



中文翻译:

信号系统中空间驱动的双稳态的鲁棒性。

生物系统在空间上是有组织的。这种微观的异质性已经显示出会产生诸如双稳态的复杂行为。尽管空间性和动态响应之间的联系对于理解生物输出至关重要,但其鲁棒性和范围尚未得到充分探讨。这项工作集中于先前描述的系统,该系统由两个单稳态模块组成,这些模块作用于不同的细胞区室并通过线性穿梭反应共享物种。本文的两个主要目的之一是量化整个参数空间中双稳态的发生频率,并确定哪些参数和哪个值范围控制双稳态的出现和属性。我们发现,采样参数空间中很小的一部分会产生双稳态响应。最重要的是,穿梭参数是控制此属性的最有影响力的参数之一。本文的另一个目标是在不损失车厢引起的双稳性的情况下,尽可能简化同一系统。该程序提供了简化的模型,该模型仍然通过减少的线性穿梭反应集连接两个单稳态系统,该线性穿梭反应使所有物种围绕两个隔室循环。双稳态系统是更复杂的行为(如振荡,内存和数字化)的主要构建块之一。因此,我们希望所提出的最小系统可以洞悉这些行为如何由隔离引起。穿梭参数是控制此属性最有影响力的参数之一。本文的另一个目标是在不损失车厢引起的双稳性的情况下,尽可能简化同一系统。该程序提供了简化的模型,该模型仍然通过减少的线性穿梭反应集连接两个单稳态系统,该线性穿梭反应使所有物种围绕两个隔室循环。双稳态系统是更复杂的行为(如振荡,内存和数字化)的主要构建块之一。因此,我们希望所提出的最小系统可以洞悉这些行为如何由隔离引起。穿梭参数是控制此属性最有影响力的参数之一。本文的另一个目标是在不损失车厢引起的双稳性的情况下,尽可能简化同一系统。该程序提供了简化的模型,该模型仍然通过减少的线性穿梭反应集连接两个单稳态系统,该线性穿梭反应使所有物种围绕两个隔室循环。双稳态系统是更复杂的行为(如振荡,内存和数字化)的主要构建块之一。因此,我们希望所提出的最小系统可以洞悉这些行为如何由隔离引起。该程序提供了简化的模型,该模型仍然通过减少的线性穿梭反应集连接两个单稳态系统,该线性穿梭反应使所有物种围绕两个隔室循环。双稳态系统是更复杂的行为(如振荡,内存和数字化)的主要构建块之一。因此,我们希望所提出的最小系统可以洞悉这些行为如何由隔离引起。该程序提供了简化的模型,该模型仍通过减少的线性穿梭反应集连接两个单稳态系统,该线性穿梭反应使所有物种围绕两个隔室循环。双稳态系统是更复杂的行为(如振荡,内存和数字化)的主要构建块之一。因此,我们希望所提出的最小系统可以洞悉这些行为如何由隔离引起。

更新日期:2020-03-27
down
wechat
bug