当前位置: X-MOL 学术Digit. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A switched variable step size NLMS adaptive filter
Digital Signal Processing ( IF 2.9 ) Pub Date : 2020-03-27 , DOI: 10.1016/j.dsp.2020.102730
Neil J. Bershad , José C.M. Bermudez

This paper studies the statistical behavior of a switched variable step size Normalized Least Mean Square adaptive filter. The purpose of the switching is to obtain a Normalized Least Mean Square adaptive filter combination with fast convergence and small steady-state mean-square weight deviation (MSD). Previous works studied variable step-size Least Mean Square (LMS) and Normalized Mean Square (NLMS) adaptive filters using a measured quantity (say instantaneous squared error) in a nonlinear recursion for varying the step size. Here, it is proposed to avoid the nonlinear recursion in a novel way that is based upon a simple physical premise: For several practical applications, what is required is a faster initial convergence rate phase, followed by a slower convergence rate period that allows for a desired steady-state performance. The fast NLMS transient behavior is obtained with a fixed step size. After convergence, the step size is reduced to a smaller value to satisfy a desired tradeoff between the second transient and the desired steady-state MSD. Thus, during the first transient, the Switched VSS-NLMS adaptive weights will converge faster or as fast as any VSS-NLMS algorithm. Of course, during the second phase, some variable step size algorithms may eventually outperform the Switched VSS-NLMS algorithm. However, in many cases, this can be a small price to pay in exchange for the theoretical and computational simplicity. No new theory is needed to predict the behavior of the nonlinear recursion for the step size. Furthermore, the analytical theory for the MSD of the new scheme is well-known.



中文翻译:

开关可变步长NLMS自适应滤波器

本文研究了开关变步长归一化最小均方自适应滤波器的统计行为。切换的目的是获得具有快速收敛和较小的稳态均方加权偏差(MSD)的归一化最小均方自适应滤波器组合。以前的工作研究了可变步长的最小均方(LMS)和归一化均方(NLMS)自适应滤波器,它使用非线性递归中的测量量(例如瞬时平方误差)来改变步长。在这里,建议以一种基于简单物理前提的新颖方式来避免非线性递归:对于一些实际应用,需要的是较快的初始收敛速率阶段,然后是较慢的收敛速率周期,从而允许所需的稳态性能。快速NLMS瞬态行为以固定步长获得。在收敛之后,将步长减小到较小的值,以满足第二瞬态和期望的稳态MSD之间的期望折衷。因此,在第一个瞬变期间,交换式VSS-NLMS自适应权重将收敛或快于任何VSS-NLMS算法。当然,在第二阶段,某些可变步长算法可能最终会胜过交换式VSS-NLMS算法。但是,在许多情况下,以理论上和计算上的简单性为代价,这可以付出很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。步长减小到较小的值,以满足第二瞬态和期望的稳态MSD之间的期望折衷。因此,在第一个瞬变期间,交换式VSS-NLMS自适应权重将收敛或与任何VSS-NLMS算法一样快。当然,在第二阶段,某些可变步长算法可能最终会胜过交换式VSS-NLMS算法。但是,在许多情况下,以理论和计算的简单性为代价,这可以付出很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。步长减小到较小的值,以满足第二瞬态和期望的稳态MSD之间的期望折衷。因此,在第一个瞬变期间,交换式VSS-NLMS自适应权重将收敛或快于任何VSS-NLMS算法。当然,在第二阶段,某些可变步长算法可能最终会胜过交换式VSS-NLMS算法。但是,在许多情况下,以理论上和计算上的简单性为代价,这可以付出很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。交换式VSS-NLMS自适应权重将收敛或与任何VSS-NLMS算法一样快。当然,在第二阶段,某些可变步长算法可能最终会胜过交换式VSS-NLMS算法。但是,在许多情况下,以理论上和计算上的简单性为代价,这可以付出很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。交换式VSS-NLMS自适应权重将收敛或快于任何VSS-NLMS算法。当然,在第二阶段,某些可变步长算法可能最终会胜过交换式VSS-NLMS算法。但是,在许多情况下,以理论上和计算上的简单性为代价,这可以付出很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。换来的理论和计算简单性,这可能是一个很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。换来的理论和计算简单性,这可能是一个很小的代价。不需要新的理论来预测步长的非线性递归行为。此外,新方案的MSD的分析理论是众所周知的。

更新日期:2020-03-27
down
wechat
bug