当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
CAVIAR: Context-driven Active and Incremental Activity Recognition
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-27 , DOI: 10.1016/j.knosys.2020.105816
Claudio Bettini; Gabriele Civitarese; Riccardo Presotto

Activity recognition on mobile device sensor data has been an active research area in mobile and pervasive computing for several years. While the majority of the proposed techniques are based on supervised learning, semi-supervised approaches are being considered to reduce the size of the training set required to initialize the model. These approaches usually apply self-training or active learning to incrementally refine the model, but their effectiveness seems to be limited to a restricted set of physical activities. We claim that the context which surrounds the user (e.g., time, location, proximity to transportation routes) combined with common knowledge about the relationship between context and human activities could be effective in significantly increasing the set of recognized activities including those that are difficult to discriminate only considering inertial sensors, and the highly context-dependent ones. In this paper, we propose CAVIAR, a novel hybrid semi-supervised and knowledge-based system for real-time activity recognition. Our method applies semantic reasoning on context-data to refine the predictions of an incremental classifier. The recognition model is continuously updated using active learning. Results on a real dataset obtained from 26 subjects show the effectiveness of our approach in increasing the recognition rate, extending the number of recognizable activities and, most importantly, reducing the number of queries triggered by active learning. In order to evaluate the impact of context reasoning, we also compare CAVIAR with a purely statistical version, considering features computed on context-data as part of the machine learning process.
更新日期:2020-03-27

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug