当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2020-03-27 , DOI: 10.1021/acssuschemeng.0c00882
Ming Zhu 1 , Jie Miao 1 , Daqin Guan 1 , Yijun Zhong 2 , Ran Ran 1 , Shaobin Wang 3 , Wei Zhou 1 , Zongping Shao 1, 2
Affiliation  

Advanced oxidation processes (AOPs) are promising for the removal of retardant organic pollutants in water. However, traditional free-radicals-dominated AOPs are often limited by poor tolerance to water characteristics. Recently, creating nonradical processes has been considered as an effective strategy to overcome this limitation, while the function and mechanism of nonradical processes are still unclear in the important oxides catalytic systems. Herein, the nonradical-dominated peroxymonosulfate (PMS)-based AOPs are triggered on a heterostructural perovskite nanocomposite catalyst (La0.4Sr1.05MnO4−δ), which is constructed from single and Ruddlesden–Popper perovskite phases by a facile self-assembled synthesis method. Noticeably, the phenol degradation rate of the heterostructural nanocomposite oxide is ∼2 times that of its individual components. This activity enhancement can be attributed to the abundant active oxygen vacancies, strong affinity to the reactants, and high-electron-transfer efficiency in the unique heterointerface of the nanocomposite. Furthermore, a ternary mechanism is unveiled: contaminants are oxidized not only by the function of radicals and singlet oxygen evoked from the active sites of perovskites but also by the transfer of their electrons to PMS via the beneficial surface of a heterostructral catalyst. This study provides new insights into nonradical-based AOPs derived from hybrid metal oxides in a PMS system.

中文翻译:

具有多种反应途径的自组装钙钛矿氧化物异质结构可实现高效废水修复

先进的氧化工艺(AOP)有望去除水中的延迟性有机污染物。但是,传统的以自由基为主的AOP通常受到对水特性耐受性差的限制。最近,创建非自由基过程已被认为是克服此局限性的有效策略,而在重要的氧化物催化体系中仍不清楚非自由基过程的功能和机理。在本文中,在非结构钙钛矿纳米复合催化剂(La 0.4 Sr 1.05 MnO4 )上触发基于非自由基支配的过氧单硫酸盐(PMS)的AOP。),它是由单相和Ruddlesden-Popper钙钛矿相通过一种简便的自组装合成方法制成的。值得注意的是,异质结构纳米复合氧化物的苯酚降解率约为其单个组分的2倍。这种活性的提高可以归因于丰富的活性氧空位,对反应物的强亲和力以及纳米复合材料独特异质界面中的高电子转移效率。此外,揭示了一种三元机制:污染物不仅被钙钛矿活性位点激发的自由基和单线态氧的功能氧化,而且还通过其电子通过异结构催化剂的有益表面转移至PMS的方式被氧化。这项研究为从PMS系统中的杂化金属氧化物衍生的基于非自由基的AOP提供了新的见解。
更新日期:2020-04-23
down
wechat
bug