当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Field Programmable Gate Arrays for Enhancing the Speed and Energy Efficiency of Quantum Dynamics Simulations
Journal of Chemical Theory and Computation ( IF 5.5 ) Pub Date : 2020-03-27 , DOI: 10.1021/acs.jctc.9b01284
José M. Rodrı́guez-Borbón 1 , Amin Kalantar 1 , Sharma S. R. K. C. Yamijala 2 , M. Belén Oviedo 3 , Walid Najjar 1 , Bryan M. Wong 2
Affiliation  

We present the first application of field programmable gate arrays (FPGAs) as new, customizable hardware architectures for carrying out fast and energy-efficient quantum dynamics simulations of large chemical/material systems. Instead of tailoring the software to fixed hardware, which is the typical case for writing quantum chemistry code for central processing units (CPUs) and graphics processing units (GPUs), FPGAs allow us to directly customize the underlying hardware (even at the level of specific electrical signals in the circuit) to give a truly optimized computational performance for quantum dynamics calculations. By offloading the most intensive and repetitive calculations onto an FPGA, we show that the computational performance of our real-time electron dynamics calculations can even exceed that of optimized commercial mathematical libraries running on high-performance GPUs. In addition to this impressive computational speedup, we show that FPGAs are immensely energy-efficient and consume 4 times less energy than modern GPU or CPU architectures. These energy savings are a practical and important metric for supercomputing centers (many of which exceed over $1 million in power costs alone), as exascale computing capabilities become more widespread and commonplace. Taken together, the implementation techniques and performance metrics of our study demonstrate that FPGAs could play a promising role in upcoming quantum chemistry and materials science applications, particularly for the acceleration and energy-efficient execution of quantum dynamics calculations.

中文翻译:

现场可编程门阵列,可提高量子动力学仿真的速度和能效

我们介绍了现场可编程门阵列(FPGA)的第一个应用,它是一种新的,可定制的硬件体系结构,用于对大型化学/材料系统进行快速且节能的量子动力学仿真。FPGA允许我们直接自定义底层硬件(甚至在特定级别的硬件上),而不是为固定硬件定制软件(这是为中央处理单元(CPU)和图形处理单元(GPU)编写量子化学代码的典型情况)。电路中的电信号),从而为量子动力学计算提供真正优化的计算性能。通过将最密集和重复的计算卸载到FPGA上,我们表明,实时电子动力学计算的计算性能甚至可以超过在高性能GPU上运行的优化的商业数学库。除了令人印象深刻的计算速度提高之外,我们还展示了FPGA具有很高的能效,并且能耗比现代GPU或CPU架构少4倍。随着百亿亿次计算能力的普及和普及,这些节能量对于超级计算中心(仅其中许多电力成本就超过100万美元)而言,是一项实用且重要的指标。综上所述,我们研究的实施技术和性能指标表明,FPGA可以在即将到来的量子化学和材料科学应用中发挥有希望的作用,
更新日期:2020-04-24
down
wechat
bug