当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications.
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2020-03-27 , DOI: 10.1021/acs.accounts.0c00012
Xiaoqiu Dou 1 , Nabila Mehwish 1 , Changli Zhao 1 , Jinying Liu 1 , Chao Xing 1 , Chuanliang Feng 1
Affiliation  

ConspectusChirality exits from molecular-level, supramolecular, and nanoscaled helical structures to the macroscopic level in biological life. Among these various levels, as the central structural motifs in living systems (e.g., double helix in DNA, α-helix, β-sheet in proteins), supramolecular helical systems arising from the asymmetrical spatial stacking of molecular units play a crucial role in a wide diversity of biochemical reactions (e.g., gene replication, molecular recognition, ion transport, enzyme catalysis, and so on). However, the importance of supramolecular chirality and its potential biofunctions has not yet been fully explored. Thus, generating chiral assembly to transfer nature's chiral code to artificial biomaterials is expected to be utilized for developing novel functional biomaterials. As one of the most commonly used biomaterials, supramolecular hydrogels have attracted considerable research interest due to their resemblance to the structure and function of the native extracellular matrix (ECM). Therefore, the performance and manipulation of chiral assembled nanoarchitectures in supramolecular hydrogels may provide useful insights into understanding the role of supramolecular chirality in biology.In this Account, recent progress on chiral supramolecular hydrogels is presented, including how to construct and regulate assembled chiral nanostructures in hydrogels with controllable handedness and then use them to develop chiral hydrogels that could be applied in biology, biochemistry, and medicine. First, a brief introduction is provided to present the basic concept related to supramolecular chirality and the importance of supramolecular chirality in living systems. The chiral assemblies in supramolecular hydrogels are strongly driven by noncovalent interactions between molecular building blocks (such as hydrogen bonding, π-π stacking, hydrophobic, and van der Waals interactions). Consequently, the handedness of these chiral assemblies can be regulated by many extra stimuli including solvents, temperature, pH, metal ions, enzymes, and photoirradiation, which is presented in the second section. This manipulation of the chirality of nanoarchitectures in supramolecular hydrogels can result in the development of potential biofunctions. For example, specific supramolecular chirality-induced biological phenomena (such as controlled cell adhesion, proliferation, differentiation, apoptosis, protein adsorption, drug delivery, and antibacterial adhesion) are presented in detail in the third section. Finally, the outlook of open challenges and future developments of this rapidly evolving field is provided. This account that highlights the diverse chirality-dependent biological phenomena not only helps us to understand the importance of chirality in life but also provides new ideas for designing and preparing chiral materials for more bioapplications.

中文翻译:

具有可调节手性的超分子水凝胶,有望用于生物医学领域。

ConspectusChirality从分子级,超分子级和纳米级螺旋结构发展到生物学生活中的宏观水平。在这些不同的水平中,作为生命系统中的中心结构基序(例如DNA中的双螺旋,蛋白质中的α-螺旋,β-折叠),由分子单元的不对称空间堆积引起的超分子螺旋系统在分子结构中起着至关重要的作用。生化反应的多样性(例如基因复制,分子识别,离子转运,酶催化等)。但是,超分子手性及其潜在的生物功能的重要性尚未得到充分探讨。因此,预期产生手性组装以将自然的手性密码转移至人造生物材料,有望用于开发新型功能性生物材料。作为最常用的生物材料之一,超分子水凝胶因其与天然细胞外基质(ECM)的结构和功能相似而吸引了相当多的研究兴趣。因此,手性组装的纳米结构在超分子水凝胶中的性能和操作可能为理解超分子的手性在生物学中的作用提供有用的见解。具有可控手性的水凝胶,然后将其用于开发可用于生物学,生物化学和医学的手性水凝胶。第一,简要介绍了与超分子手性有关的基本概念以及超分子手性在生物系统中的重要性。超分子水凝胶中的手性组装受分子结构单元之间的非共价相互作用(例如氢键,π-π堆积,疏水和范德华相互作用)强烈驱动。因此,这些手性分子的手性可以通过许多额外的刺激来调节,包括溶剂,温度,pH,金属离子,酶和光辐照,这将在第二部分中介绍。超分子水凝胶中纳米结构的手性的这种操纵可导致潜在生物功能的发展。例如,特定的超分子手性诱导的生物学现象(例如受控的细胞粘附,第三部分详细介绍了细胞的增殖,分化,凋亡,蛋白质吸附,药物传递和抗菌粘附。最后,提供了这个快速发展领域的挑战和未来发展的前景。该论述强调了各种依赖手性的生物学现象,不仅有助于我们理解手性在生活中的重要性,而且为设计和制备手性材料以用于更多生物应用提供了新思路。
更新日期:2020-04-23
down
wechat
bug