当前位置: X-MOL 学术NPG Asia Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Healable, memorizable, and transformable lattice structures made of stiff polymers
NPG Asia Materials ( IF 8.6 ) Pub Date : 2020-03-27 , DOI: 10.1038/s41427-020-0208-9
Kunhao Yu , Haixu Du , An Xin , Kyung Hoon Lee , Zhangzhengrong Feng , Sami F. Masri , Yong Chen , Guoliang Huang , Qiming Wang

Emerging transformable lattice structures provide promising paradigms to reversibly switch lattice configurations, thereby enabling their properties to be tuned on demand. The existing transformation mechanisms are limited to nonfracture deformation, such as origami, instability, shape memory, and liquid crystallinity. In this study, we present a class of transformable lattice structures enabled by fracture and shape-memory-assisted healing. The lattice structures are additively manufactured with a molecularly designed photopolymer capable of both fracture healing and shape memory. We show that 3D-architected lattice structures with various volume fractions can heal fractures and fully restore stiffness and strength over two to ten healing cycles. In addition, coupled with the shape-memory effect, the lattice structures can recover fracture-associated distortion and then heal fracture interfaces, thereby enabling healing of lattice wing damages, mode-I fractures, dent-induced crashes, and foreign-object impacts. Moreover, by harnessing the coupling of fracture and shape-memory-assisted healing, we demonstrate reversible configuration transformations of lattice structures to enable switching among property states of different stiffnesses, vibration transmittances, and acoustic absorptions. These healable, memorizable, and transformable lattice structures may find broad applications in next-generation aircraft panels, automobile frames, body armor, impact mitigators, vibration dampers, and acoustic modulators.



中文翻译:

由硬质聚合物制成的可修复,可记忆且可变形的晶格结构

新兴的可变形晶格结构提供了有前途的范例,可逆地切换晶格配置,从而使它们的性能可以按需进行调整。现有的转换机制仅限于非断裂变形,例如折纸,不稳定性,形状记忆和液晶性。在这项研究中,我们提出了一类可变形的晶格结构,其通过骨折和形状记忆辅助的愈合得以实现。晶格结构是用分子设计的光敏聚合物加成制造的,该光敏聚合物既能断裂愈合,又能记忆形状。我们显示具有不同体积分数的3D架构晶格结构可以治愈骨折,并在两到十个愈合周期内完全恢复刚度和强度。此外,再加上形状记忆效应,晶格结构可以恢复与断裂相关的变形,然后修复断裂界面,从而能够修复晶格翼损伤,I型断裂,凹痕引起的碰撞以及异物撞击。此外,通过利用骨折和形状记忆辅助愈合的耦合,我们演示了晶格结构的可逆构型转换,从而能够在不同刚度,振动透射率和吸声特性状态之间进行切换。这些可修复,可记忆和可变形的晶格结构可在下一代飞机面板,汽车框架,防弹衣,减震器,减振器和声学调制器中找到广泛的应用。凹痕引起的碰撞和异物撞击。此外,通过利用骨折和形状记忆辅助愈合的耦合,我们演示了晶格结构的可逆构型转换,从而能够在不同刚度,振动透射率和吸声特性状态之间进行切换。这些可修复,可记忆和可变形的晶格结构可在下一代飞机面板,汽车框架,防弹衣,减震器,减振器和声学调制器中找到广泛的应用。凹痕引起的碰撞和异物撞击。此外,通过利用骨折和形状记忆辅助愈合的耦合,我们演示了晶格结构的可逆构型转换,从而能够在不同刚度,振动透射率和吸声特性状态之间进行切换。这些可修复,可记忆和可变形的晶格结构可在下一代飞机面板,汽车框架,防弹衣,减震器,减振器和声学调制器中找到广泛的应用。和吸声。这些可修复,可记忆和可变形的晶格结构可在下一代飞机面板,汽车框架,防弹衣,减震器,减振器和声学调制器中找到广泛的应用。和吸声。这些可修复,可记忆和可变形的晶格结构可在下一代飞机面板,汽车框架,防弹衣,减震器,减振器和声学调制器中找到广泛的应用。

更新日期:2020-03-27
down
wechat
bug