当前位置: X-MOL 学术IEEE Trans. Geosci. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Super-Resolution Doppler Velocity Estimation by Kernel-Based Range-τ Point Conversions for UWB Short-Range Radars
IEEE Transactions on Geoscience and Remote Sensing ( IF 7.5 ) Pub Date : 2020-04-01 , DOI: 10.1109/tgrs.2019.2949104
Masafumi Setsu , Takumi Hayashi , Jianghaomiao He , Shouhei Kidera

Lower band ultrawideband (UWB) Doppler radar is promising for through-wall imaging, e.g., human body detection in rescue scenarios. The inherent problem with pulse-Doppler radar is the tradeoff between the Doppler velocity resolution and the resulting temporal resolution that makes it difficult to conduct real-time target tracking, because the separation of micro-Doppler velocities of the human body requires a higher Doppler velocity resolution. This problem is particularly severe for lower band UWB radar systems, which are required to attain a sufficient penetration depth in concrete material in the through-the-wall imaging scenario. Because UWB signals generally have large fractional bandwidths, the reflected pulse is located over a range gate along the slow-time direction; this is well known as the range walk problem. As a promising solution to this problem, this article newly introduces a technique for a super-resolution Doppler velocity estimation algorithm based on Gaussian kernel density estimation, which converts observed range– $\tau $ points to Doppler-associated ranges. In addition, this approach makes an important contribution for super-resolution range extraction with a compressed sensing (CS) filter, which is combined with the range-point migration (RPM) method for human body imaging associated with micro-Doppler components. 2-D or 3-D numerical simulations, including human body imaging scenario, demonstrate that the proposed method allows both accurate Doppler velocity estimation and human body imaging, which can be updated at the pulse-repetition interval.

中文翻译:

通过基于内核的距离-τ 点转换为 UWB 短程雷达进行超分辨率多普勒速度估计

低频段超宽带 (UWB) 多普勒雷达有望用于穿墙成像,例如救援场景中的人体检测。脉冲多普勒雷达的固有问题是多普勒速度分辨率和由此产生的时间分辨率之间的权衡,这使得难以进行实时目标跟踪,因为人体微多普勒速度的分离需要更高的多普勒速度解析度。这个问题对于较低频段的 UWB 雷达系统尤其严重,在穿墙成像场景中,这些系统需要在混凝土材料中获得足够的穿透深度。由于 UWB 信号通常具有较大的部分带宽,因此反射脉冲位于沿慢时间方向的距离门上;这就是众所周知的范围行走问题。作为该问题的一个有前景的解决方案,本文新引入了一种基于高斯核密度估计的超分辨率多普勒速度估计算法技术,该技术将观测距离-$\tau$点转换为多普勒相关距离。此外,这种方法为使用压缩感知 (CS) 滤波器的超分辨率范围提取做出了重要贡献,该滤波器与距离点偏移 (RPM) 方法相结合,用于与微多普勒分量相关的人体成像。2-D 或 3-D 数值模拟,包括人体成像场景,表明所提出的方法允许准确的多普勒速度估计和人体成像,可以在脉冲重复间隔更新。这篇文章新介绍了一种基于高斯核密度估计的超分辨率多普勒速度估计算法技术,该技术将观测距离-$\tau$点转换为多普勒相关距离。此外,该方法为使用压缩感知 (CS) 滤波器的超分辨率范围提取做出了重要贡献,该滤波器与距离点偏移 (RPM) 方法相结合,用于与微多普勒分量相关的人体成像。2-D 或 3-D 数值模拟,包括人体成像场景,表明所提出的方法允许准确的多普勒速度估计和人体成像,可以在脉冲重复间隔更新。本文新介绍了一种基于高斯核密度估计的超分辨率多普勒速度估计算法的技术,该技术将观测范围-$\tau $点转换为多普勒相关范围。此外,该方法为使用压缩感知 (CS) 滤波器的超分辨率范围提取做出了重要贡献,该滤波器与距离点偏移 (RPM) 方法相结合,用于与微多普勒分量相关的人体成像。2-D 或 3-D 数值模拟,包括人体成像场景,表明所提出的方法允许准确的多普勒速度估计和人体成像,可以在脉冲重复间隔更新。它将观察到的范围 - $\tau $ 点转换为多普勒相关范围。此外,该方法为使用压缩感知 (CS) 滤波器的超分辨率范围提取做出了重要贡献,该滤波器与距离点偏移 (RPM) 方法相结合,用于与微多普勒分量相关的人体成像。2-D 或 3-D 数值模拟,包括人体成像场景,表明所提出的方法允许准确的多普勒速度估计和人体成像,可以在脉冲重复间隔更新。它将观察到的范围 - $\tau $ 点转换为多普勒相关范围。此外,该方法为使用压缩感知 (CS) 滤波器的超分辨率范围提取做出了重要贡献,该滤波器与距离点偏移 (RPM) 方法相结合,用于与微多普勒分量相关的人体成像。2-D 或 3-D 数值模拟,包括人体成像场景,表明所提出的方法允许准确的多普勒速度估计和人体成像,可以在脉冲重复间隔更新。
更新日期:2020-04-01
down
wechat
bug