当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topological funneling of light
Science ( IF 44.7 ) Pub Date : 2020-03-26 , DOI: 10.1126/science.aaz8727
Sebastian Weidemann 1 , Mark Kremer 1 , Tobias Helbig 2 , Tobias Hofmann 2 , Alexander Stegmaier 2 , Martin Greiter 2 , Ronny Thomale 2 , Alexander Szameit 1
Affiliation  

A topological light funnel Because most physical systems cannot be totally isolated from their environment, some degree of dissipation or loss is expected. The successful operation of such systems generally relies on mitigating for that loss. Mathematically, such external interactions are described as non-Hermitian. Recent work has shown that controlling the gain and loss in these systems gives rise to a wide variety of exotic phenomena not expected for their isolated Hermitian counterparts. Using a time-dependent photonic lattice in which the topological properties can be controlled, Weidemann et al. show that such a structure can efficiently funnel light to the interface irrespective of the point of incidence on the lattice. Such control of the topological properties could be useful for nanophotonic applications in integrated optical chip platforms. Science, this issue p. 311 The topological properties of a photonic crystal can be used to efficiently funnel light. Dissipation is a general feature of non-Hermitian systems. But rather than being an unavoidable nuisance, non-Hermiticity can be precisely controlled and hence used for sophisticated applications, such as optical sensors with enhanced sensitivity. In our work, we implement a non-Hermitian photonic mesh lattice by tailoring the anisotropy of the nearest-neighbor coupling. The appearance of an interface results in a complete collapse of the entire eigenmode spectrum, leading to an exponential localization of all modes at the interface. As a consequence, any light field within the lattice travels toward this interface, irrespective of its shape and input position. On the basis of this topological phenomenon, called the “non-Hermitian skin effect,” we demonstrate a highly efficient funnel for light.

中文翻译:

光的拓扑漏斗

拓扑光漏斗 因为大多数物理系统不能与环境完全隔离,所以预计会有一定程度的耗散或损耗。此类系统的成功运行通常依赖于减轻这种损失。在数学上,这种外部相互作用被描述为非厄米。最近的工作表明,控制这些系统中的增益和损失会产生各种各样的奇异现象,这是它们孤立的埃尔米特对应物所没有的。Weidemann 等人使用可以控制拓扑特性的时间相关光子晶格。表明这种结构可以有效地将光聚集到界面上,而不管晶格上的入射点如何。这种拓扑特性的控制对于集成光学芯片平台中的纳米光子应用可能有用。科学,这个问题 p。311 光子晶体的拓扑特性可用于有效地漏斗光。耗散是非厄米系统的一般特征。但是,非厄米性不是不可避免的麻烦,而是可以精确控制,因此可用于复杂的应用,例如具有增强灵敏度的光学传感器。在我们的工作中,我们通过调整最近邻耦合的各向异性来实现非厄米光子网格点阵。界面的出现导致整个本征模式谱的完全崩溃,导致界面处所有模式的指数局部化。作为结果,无论其形状和输入位置如何,晶格内的任何光场都会向该界面传播。基于这种称为“非厄米集肤效应”的拓扑现象,我们展示了一种高效的光漏斗。
更新日期:2020-03-26
down
wechat
bug