当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
Science ( IF 44.7 ) Pub Date : 2020-03-26 , DOI: 10.1126/science.aba3433
Daehan Kim 1 , Hee Joon Jung 2 , Ik Jae Park 3 , Bryon W Larson 4 , Sean P Dunfield 4, 5 , Chuanxiao Xiao 4 , Jekyung Kim 1 , Jinhui Tong 4 , Passarut Boonmongkolras 1 , Su Geun Ji 3 , Fei Zhang 4 , Seong Ryul Pae 1 , Minkyu Kim 1 , Seok Beom Kang 6 , Vinayak Dravid 2 , Joseph J Berry 4, 7, 8 , Jin Young Kim 3 , Kai Zhu 4 , Dong Hoe Kim 4, 6 , Byungha Shin 1
Affiliation  

Engineering perovskites with anions The bandgap of the perovskite top layer in tandem silicon solar cells must be tuned to ∼1.7 electron volts. Usually, the cation composition is varied because the bromine-rich anion compositions with wide bandgaps are structurally unstable. Kim et al. show that by using phenethylammonium as a two-dimensional additive, along with iodine and thiocyanate, bromine-rich perovskite films can be stabilized. A tandem silicon cell delivered >26% certified power conversion efficiency, and a perovskite device maintained 80% of its initial power conversion efficiency of >20% after 1000 hours under illumination. Science, this issue p. 155 Thiocyanate as a two-dimensional additive enhanced perovskite carrier mobility and stability in silicon tandem solar cells. Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.

中文翻译:

阴离子工程宽带隙钙钛矿实现高效、稳定的硅串联电池

用阴离子设计钙钛矿 串联硅太阳能电池中钙钛矿顶层的带隙必须调整到 1.7 电子伏特。通常,阳离子组成是变化的,因为具有宽带隙的富溴阴离子组成在结构上不稳定。金等人。表明通过使用苯乙基铵作为二维添加剂,连同碘和硫氰酸盐,可以稳定富含溴的钙钛矿薄膜。串联硅电池提供 >26% 的认证功率转换效率,钙钛矿设备在光照下 1000 小时后保持其初始功率转换效率的 80% >20%。科学,这个问题 p。155 硫氰酸盐作为二维添加剂增强了硅串联太阳能电池中钙钛矿载流子的迁移率和稳定性。最大限度地提高钙钛矿/硅串联太阳能电池的功率转换效率 (PCE),可以超过 Shockley-Queisser 单电池限制,需要高性能、稳定的具有宽带隙的钙钛矿顶部电池。我们开发了一种稳定的钙钛矿太阳能电池,带隙约为 1.7 电子伏特,在连续照明 1000 小时后仍保持其初始 PCE 的 80% 以上,即 20.7%。基于苯乙基铵的二维 (2D) 添加剂的阴离子工程对于控制基于碘化铅骨架的二维钝化层的结构和电气特性至关重要。顶部和底部电池的光谱响应的理想组合使单片两端宽带隙钙钛矿/硅串联太阳能电池的 PCE 高达 26.7%。
更新日期:2020-03-26
down
wechat
bug