当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal–organic framework-derived nanocomposite metal-oxides with enhanced catalytic performance in thermal decomposition of ammonium perchlorate
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jallcom.2020.154837
Nafise Modanlou Juibari , Sara Tarighi

Abstract In this work, CuO@NiO nanocomposites have been prepared using a 3D metal-organic framework, [Ni(μ3-tp) (μ2-pyz)]n as precursor, where H2tp and pyz corresponds to 1,4-benzenedicarboxylic acid and pyrazine, respectively. Calcinations of the precursor at two different temperatures (400 and 500 °C) following precipitating copper nitrate by NaOH (Cu:Ni molar ratio of 1:2) resulted in metal oxide nanocomposites with different characteristics (CuO@NiO-400 (2:1) and CuO@NiO-500 (2:1), respectively). Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) coupled with EDS mapping, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) analyses have been used to obtain compositional and morphological features of the prepared samples. The effect of calcination temperature on textural characteristics of the nanocomposites have been examined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. It was found that higher calcination temperature destroyed the porous structure of the nanoparticles due to agglomeration. Catalytic performance of the nanocomposites was investigated toward thermal decomposition of ammonium perchlorate (AP) by means of differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The results showed that the composite metal oxides (CuO@NiO) had more catalytic activity compared with CuO and NiO nanoparticles. CuO@NiO-400 (1:2) nanocomposites with larger surface area and smaller particle size exhibited significant catalytic activity compared with CuO@NiO-500 (1:2). The decomposition temperature was notably decreased from 420 to 310 °C. The released heat from AP decomposition was increased from 450 J g−1 to 1535 J g−1 over CuO@NiO-400 (1:2) nanocomposites. Also, the effect of different molar ratios (1:1 and 2:1) of CuO and NiO was investigated on AP thermal decomposition. The obtained nanocomposites are promising enough for further catalytic studies on the thermal decomposition of AP.

中文翻译:

金属有机骨架衍生的纳米复合金属氧化物在高氯酸铵热分解中具有增强的催化性能

摘要 在这项工作中,使用 3D 金属有机骨架制备了 CuO@NiO 纳米复合材料,[Ni(μ3-tp) (μ2-pyz)]n 作为前驱体,其中 H2tp 和 pyz 对应于 1,4-苯二甲酸和分别为吡嗪。在用 NaOH(Cu:Ni 摩尔比为 1:2)沉淀硝酸铜后,在两种不同温度(400 和 500 °C)下煅烧前体,产生具有不同特性的金属氧化物纳米复合材料(CuO@NiO-400(2:1 ) 和 CuO@NiO-500 (2:1))。傅里叶变换红外光谱 (FT-IR)、X 射线粉末衍射 (XRD)、扫描电子显微镜 (SEM) 与 EDS 映射、透射电子显微镜 (TEM)、X 射线光电子能谱 (XPS) 和动态光散射 (DLS) 分析已用于获得制备样品的成分和形态特征。Brunauer-Emmett-Teller (BET) 和 Barrett-Joyner-Halenda (BJH) 方法研究了煅烧温度对纳米复合材料结构特性的影响。发现较高的煅烧温度会由于团聚而破坏纳米颗粒的多孔结构。通过差示扫描量热法(DSC)和热重分析法(TGA)研究了纳米复合材料对高氯酸铵(AP)热分解的催化性能。结果表明,与CuO和NiO纳米颗粒相比,复合金属氧化物(CuO@NiO)具有更高的催化活性。CuO@NiO-400 (1: 2)与CuO@NiO-500(1:2)相比,具有更大表面积和更小粒径的纳米复合材料表现出显着的催化活性。分解温度从 420°C 显着降低到 310°C。在 CuO@NiO-400 (1:2) 纳米复合材料上,AP 分解释放的热量从 450 J g-1 增加到 1535 J g-1。此外,研究了不同摩尔比(1:1 和 2:1)的 CuO 和 NiO 对 AP 热分解的影响。所获得的纳米复合材料足以用于进一步催化研究 AP 的热分解。2) 纳米复合材料。此外,研究了不同摩尔比(1:1 和 2:1)的 CuO 和 NiO 对 AP 热分解的影响。所获得的纳米复合材料足以用于进一步催化研究 AP 的热分解。2) 纳米复合材料。此外,研究了不同摩尔比(1:1 和 2:1)的 CuO 和 NiO 对 AP 热分解的影响。所获得的纳米复合材料足以用于进一步催化研究 AP 的热分解。
更新日期:2020-08-01
down
wechat
bug