当前位置: X-MOL 学术Inform. Sci. › 论文详情
Blind quality assessment for tone-mapped images based on local and global features
Information Sciences ( IF 5.524 ) Pub Date : 2020-03-26 , DOI: 10.1016/j.ins.2020.03.067
Xuelin Liu; Yuming Fang; Rengang Du; Yifan Zuo; Wenying Wen

In order to show high dynamic range (HDR) images by traditional displays, various tone-mapping operators have been designed to convert HDR images into low dynamic range (LDR) images recently. However, how to estimate the visual quality of LDR images effectively is still challenging. In this paper, we propose a novel blind quality assessment method for tone-mapped images with the consideration of naturalness and the perceptual characteristics of human visual system (HVS). First, we design parametric models that describe characteristics of chromatic information in tone-mapped images and extract quality-aware features based on global statistics model to characterize the naturalness of tone-mapped images. Second, motivated by perceptual characteristics that the HVS is highly adaptive to the image texture, we employ local texture features to capture the quality degradation of tone-mapped images. Support vector regression (SVR) is used to train the quality prediction model from features to human ratings. Experimental results indicate that the proposed metric can get better performance in predicting the visual quality of tone-mapped images than the state-of-the-art methods.
更新日期:2020-04-21

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug