当前位置: X-MOL 学术Inform. Sci. › 论文详情
True Scores for Tartarus with Adaptive GAs that Evolve FSMs on GPU
Information Sciences ( IF 5.524 ) Pub Date : 2020-03-26 , DOI: 10.1016/j.ins.2020.03.072
Kaya Oguz

The Tartarus Problem is one of the candidate benchmark problems in evolutionary algorithms. We take advantage of the graphical processing unit (GPU) to improve the results of the software agents that use finite state machines (FSMs) for this benchmark. While doing so we also contribute to the study of the problem on several grounds. Similar to existing studies we use genetic algorithms to evolve FSMs, but unlike most of them we use adaptive operators for controlling the parameters of the algorithm. We show that the actual number of valid boards is not 297,040, but 74,760, because the agent is indifferent to the rotations of the board. We also show that the agent can only come across 383 different combinations, rather than 6561 that is used in the current literature. A final contribution is that we report the first true scores for the agents by testing them with all available 74,760 boards. Our best solution has a mean score of 8.5379 on all boards.
更新日期:2020-03-27

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug