当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Toward semantic data imputation for a dengue dataset
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-26 , DOI: 10.1016/j.knosys.2020.105803
N. Kamkhad; K. Jampachaisri; P. Siriyasatien; K. Kesorn

Missing data are a major problem that affects data analysis techniques for forecasting. Traditional methods suffer from poor performance in predicting missing values using simple techniques, e.g., mean and mode. In this paper, we present and discuss a novel method of imputing missing values semantically with the use of an ontology model. We make three new contributions to the field: first, an improvement in the efficiency of predicting missing data utilizing Particle Swarm Optimization (PSO), which is applied to the numerical data cleansing problem, with the performance of PSO being enhanced using K-means to help determine the fitness value. Second, the incorporation of an ontology with PSO for the purpose of narrowing the search space, to make PSO provide greater accuracy in predicting numerical missing values while quickly converging on the answer. Third, the facilitation of a framework to substitute nominal data that are lost from the dataset using the relationships of concepts and a reasoning mechanism concerning the knowledge-based model. The experimental results indicated that the proposed method could estimate missing data more efficiently and with less chance of error than conventional methods, as measured by the root mean square error.
更新日期:2020-03-27

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug