当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Automatic Modelling of Human Musculoskeletal Ligaments -- Framework Overview and Model Quality Evaluation
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-03-24 , DOI: arxiv-2003.11025
Noura Hamze; Lukas Nocker; Nikolaus Rauch; Markus Walzthöni; Fabio Carrillo; Philipp Fürnstahl; Matthias Harders

Accurate segmentation of connective soft tissues is still a challenging task, which hinders the generation of corresponding geometric models for biomechanical computations. Alternatively, one could predict ligament insertion sites and then approximate the shapes, based on anatomical knowledge and morphological studies. Here, we describe a corresponding integrated framework for the automatic modelling of human musculoskeletal ligaments. We combine statistical shape modelling with geometric algorithms to automatically identify insertion sites, based on which geometric surface and volume meshes are created. For demonstrating a clinical use case, the framework has been applied to generate models of the interosseous membrane in the forearm. For the adoption to the forearm anatomy, ligament insertion sites in the statistical model were defined according to anatomical predictions following an approach proposed in prior work. For evaluation we compared the generated sites, as well as the ligament shapes, to data obtained from a cadaveric study, involving five forearms with a total of 15 ligaments. Our framework permitted the creation of 3D models approximating ligaments' shapes with good fidelity. However, we found that the statistical model trained with the state-of-the-art prediction of the insertion sites was not always reliable. Using that model, average mean square errors as well as Hausdorff distances of the meshes increased by more than one order of magnitude, as compared to employing the known insertion locations of the cadaveric study. Using the latter an average mean square error of 0.59 mm and an average Hausdorff distance of less than 7 mm resulted, for the complete set of ligaments. In conclusion, the presented approach for generating ligament shapes from insertion points appears to be feasible but the detection of the insertion sites with a SSM is too inaccurate.
更新日期:2020-03-26

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug