当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A reflection on lithium-ion battery cathode chemistry
Nature Communications ( IF 14.7 ) Pub Date : 2020-03-25 , DOI: 10.1038/s41467-020-15355-0
Arumugam Manthiram

Lithium-ion batteries have aided the portable electronics revolution for nearly three decades. They are now enabling vehicle electrification and beginning to enter the utility industry. The emergence and dominance of lithium-ion batteries are due to their higher energy density compared to other rechargeable battery systems, enabled by the design and development of high-energy density electrode materials. Basic science research, involving solid-state chemistry and physics, has been at the center of this endeavor, particularly during the 1970s and 1980s. With the award of the 2019 Nobel Prize in Chemistry to the development of lithium-ion batteries, it is enlightening to look back at the evolution of the cathode chemistry that made the modern lithium-ion technology feasible. This review article provides a reflection on how fundamental studies have facilitated the discovery, optimization, and rational design of three major categories of oxide cathodes for lithium-ion batteries, and a personal perspective on the future of this important area.



中文翻译:

对锂离子电池阴极化学的反思

锂离子电池已经为便携式电子设备的革命带来了近三十年的历史。他们现在使车辆电气化,并开始进入公用事业行业。锂离子电池的出现和优势归因于其与其他可充电电池系统相比更高的能量密度,这是由高能量密度电极材料的设计和开发实现的。涉及固态化学和物理的基础科学研究一直是这项工作的中心,特别是在1970年代和1980年代。随着2019年诺贝尔化学奖授予锂离子电池的发展,回顾使现代锂离子技术变得可行的阴极化学的发展具有启发性。

更新日期:2020-04-24
down
wechat
bug