当前位置: X-MOL 学术Iran. Polym. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature resistance of AM/AMPS/NVP copolymer microspheres
Iranian Polymer Journal ( IF 2.4 ) Pub Date : 2020-03-25 , DOI: 10.1007/s13726-020-00809-5
Meiqin Lin , Qian Zhao , Shuangmin Dang , Zihao Yang , Zhaoxia Dong , Juan Zhang

Functional monomers, such as 2-acrylamide-2-methylpropionic sulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and acrylamide (AM), were copolymerized into terpolymer microspheres by inverse suspension polymerization. The structure, morphology, swelling, and temperature resistance of the microspheres were comprehensively characterized through several means, including a 13C nuclear magnetic resonance spectroscope, scanning electron microscope, optical microscope, and laser particle size analyzer (LPSA). The results showed that the AM, AMPS, and NVP monomers were initially polymerized to form smooth and uniformly dispersed terpolymer microspheres. The particle size distribution of the microspheres ranged from 60 to 90 μm at a stirring speed of 300 rpm. The microspheres fully absorbed water and swelled to 21.9 times at 120 °C compared with dry powder microspheres. The ternary copolymer microsphere/water dispersion system can only withstand a 120 °C temperature for 19 days. However, this temperature resistance of the microspheres can be effectively improved by adding the appropriate stabilizer solution. The microspheres can be stabilized for at least 42 days and 120 days in 0.1% thiourea--cobalt chloride composite stabilizer solution and 0.025% LY stabilizer solution, respectively, at 120 °C. It can be seen that the microspheres, water, and stabilizer systems have excellent long-term thermal stability. The AM/AMPS/NVP microspheres with temperature resistance will have broad application prospects in high-temperature reservoirs.

中文翻译:

AM / AMPS / NVP共聚物微球的耐温性

通过反相悬浮聚合将诸如2-丙烯酰胺-2-甲基丙磺酸(AMPS),N-乙烯基吡咯烷酮(NVP)和丙烯酰胺(AM)的功能单体共聚成三元共聚物微球。通过多种方法对微球的结构,形态,溶胀和耐热性进行了全面表征,包括13种C核磁共振光谱仪,扫描电子显微镜,光学显微镜和激光粒度分析仪(LPSA)。结果表明,AM,AMPS和NVP单体最初聚合形成光滑且均匀分散的三元共聚物微球。在300rpm的搅拌速度下,微球的粒度分布在60至90μm的范围内。与干粉微球相比,微球可充分吸收水分,并在120°C时溶胀至21.9倍。三元共聚物微球/水分散体系只能在120°C的温度下承受19天。但是,通过添加适当的稳定剂溶液,可以有效地改善微球的耐热性。微球可以在0内稳定至少42天和120天。在120°C时分别使用1%硫脲-氯化钴复合稳定剂溶液和0.025%LY稳定剂溶液。可以看出,微球,水和稳定剂系统具有出色的长期热稳定性。具有耐热性的AM / AMPS / NVP微球在高温储层中具有广阔的应用前景。
更新日期:2020-03-25
down
wechat
bug