当前位置: X-MOL 学术Polym. Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The synthesis of rGO/RuO2, rGO/PANI, RuO2/PANI and rGO/RuO2/PANI nanocomposites and their supercapacitors
Polymer Bulletin ( IF 3.1 ) Pub Date : 2019-06-24 , DOI: 10.1007/s00289-019-02850-8
Murat Ates , Murat Yildirim

In this work, reduced graphene oxide (rGO) was obtained by chemical reduction of graphene oxide (GO) using sodium borohydride (NaBH4). Four different nanocomposites rGO/ruthenium oxide (RuO2), rGO/polyaniline (PANI), RuO2/PANI and rGO/RuO2/PANI were chemically synthesized. In addition, PANI-based nanocomposites were synthesized by in situ polymerization technique. Nanocomposites were examined by different methods such as Fourier transform infrared spectroscopy–attenuated transmission reflectance, UV–Vis spectrophotometer, scanning electron microscopy–energy-dispersive X-ray analysis, thermal analysis (TGA–DTA) and transmission electron microscopy. TGA–DTA results show that the decomposition of rGO/RuO2/PANI nanocomposite (27.2% at 788.8 °C) was less than that of rGO (1% at 779.7 °C), which confirms the successful synthesis of nanocomposites. These nanocomposites can be used in supercapacitor applications. Supercapacitor device performances were taken by cyclic voltammetry (CV), galvanostatic constant current and electrochemical impedance spectroscopy (EIS) via two-electrode configuration. Ragone plots were drawn to observe energy and power densities of supercapacitor devices. Stability tests were taken by CV method for 1000 cycles. A ternary rGO/RuO2/PANI nanocomposite yields higher specific capacitance as Csp = 723.09 F g−1 than rGO/RuO2 (Csp = 347.28 F g−1), rGO/PANI (Csp = 159.62 F g−1), RuO2/PANI (Csp = 40.2 F g−1) and rGO (Csp = 37.5 F g−1) at 2 mV/s by CV method. A new electrical circuit model of LR(C(R(CR))) was used to analyze EIS data for rGO, rGO/PANI, rGO/RuO2, RuO2/PANI and rGO/RuO2/PANI nanocomposites. These nanocomposites demonstrate remarkable properties for use as electroactive materials for supercapacitor applications.

中文翻译:

rGO/RuO2、rGO/PANI、RuO2/PANI和rGO/RuO2/PANI纳米复合材料及其超级电容器的合成

在这项工作中,通过使用硼氢化钠 (NaBH4) 化学还原氧化石墨烯 (GO) 获得还原氧化石墨烯 (rGO)。化学合成了四种不同的纳米复合材料 rGO/氧化钌 (RuO2)、rGO/聚苯胺 (PANI)、RuO2/PANI 和 rGO/RuO2/PANI。此外,聚苯胺基纳米复合材料是通过原位聚合技术合成的。通过不同的方法检查纳米复合材料,如傅里叶变换红外光谱-衰减透射反射、紫外-可见分光光度计、扫描电子显微镜-能量色散 X 射线分析、热分析 (TGA-DTA) 和透射电子显微镜。TGA-DTA 结果表明,rGO/RuO2/PANI 纳米复合材料的分解(788.8°C 时为 27.2%)小于 rGO(779.7°C 时为 1%),这证实了纳米复合材料的成功合成。这些纳米复合材料可用于超级电容器应用。超级电容器装置的性能通过循环伏安法 (CV)、恒电流恒流和电化学阻抗谱 (EIS) 通过双电极配置获得。绘制 Ragone 图以观察超级电容器装置的能量和功率密度。稳定性测试采用 CV 方法进行 1000 次循环。三元 rGO/RuO2/PANI 纳米复合材料比 rGO/RuO2 (Csp = 347.28 F g-1)、rGO/PANI (Csp = 159.62 F g-1)、RuO2/PANI 产生更高的比电容,因为 Csp = 723.09 F g-1 (Csp = 40.2 F g-1) 和 rGO (Csp = 37.5 F g-1) 在 2 mV/s 通过 CV 方法。LR(C(R(CR))) 的新电路模型用于分析 rGO、rGO/PANI、rGO/RuO2、RuO2/PANI 和 rGO/RuO2/PANI 纳米复合材料的 EIS 数据。
更新日期:2019-06-24
down
wechat
bug