当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Streptavidin/biotin: Tethering geometry defines unbinding mechanics
Science Advances ( IF 11.7 ) Pub Date : 2020-03-25 , DOI: 10.1126/sciadv.aay5999
Steffen M Sedlak 1 , Leonard C Schendel 1 , Hermann E Gaub 1 , Rafael C Bernardi 2
Affiliation  

Macromolecules tend to respond to applied forces in many different ways. Chemistry at high shear forces can be intriguing, with relatively soft bonds becoming very stiff in specific force-loading geometries. Largely used in bionanotechnology, an important case is the streptavidin (SA)/biotin interaction. Although SA’s four subunits have the same affinity, we find that the forces required to break the SA/biotin bond depend strongly on the attachment geometry. With AFM-based single-molecule force spectroscopy (SMFS), we measured unbinding forces of biotin from different SA subunits to range from 100 to more than 400 pN. Using a wide-sampling approach, we carried out hundreds of all-atom steered molecular dynamics (SMD) simulations for the entire system, including molecular linkers. Our strategy revealed the molecular mechanism that causes a fourfold difference in mechanical stability: Certain force-loading geometries induce conformational changes in SA’s binding pocket lowering the energy barrier, which biotin has to overcome to escape the pocket.



中文翻译:


链霉亲和素/生物素:束缚几何结构定义了解离机制



大分子倾向于以多种不同的方式响应所施加的力。高剪切力下的化学反应可能很有趣,相对较软的键在特定的力加载几何形状中变得非常坚硬。广泛用于生物纳米技术,一个重要的例子是链霉亲和素(SA)/生物素相互作用。尽管SA的四个亚基具有相同的亲和力,但我们发现打破SA/生物素键所需的力在很大程度上取决于附着几何形状。利用基于 AFM 的单分子力谱 (SMFS),我们测量了不同 SA 亚基的生物素解离力,范围为 100 至 400 pN 以上。使用广泛采样方法,我们对整个系统(包括分子连接器)进行了数百次全原子引导分子动力学(SMD)模拟。我们的策略揭示了导致机械稳定性四倍差异的分子机制:某些力加载几何形状会引起SA结合口袋的构象变化,从而降低生物素必须克服的能量障碍才能逃离口袋。

更新日期:2020-03-26
down
wechat
bug