当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-temperature ethanol steam reforming in PdCu membrane reactor
Journal of Membrane Science ( IF 9.5 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.memsci.2020.118083
Haiyuan Jia , Hengyong Xu , Xueru Sheng , Xiaodeng Yang , Wenjie Shen , Andreas Goldbach

Abstract Membrane-assisted steam reforming of ethanol is an intriguing option for on-site H2 production from biomass in refueling stations for automotive fuel cells. The energy consumption for H2 compression and thus fuel costs can be significantly reduced if this process could deliver H2 at elevated pressures. Thermodynamic analyses show that reforming temperatures above 823 K are needed for attaining H2 partial pressures that will enable operation without sweep gas and allow appreciable compression energy savings. Reforming of a 6:1 steam/ethanol mixture was practically driven to completion at 873 K and 1.3 MPa employing thin, supported Pd and PdCu membranes without sweep gas. Both H2 yield and H2 recovery factor remained stable during 10 day continuous testing of these membranes. The H2 yield reached nearly 94% with ca. 92% H2 separated by the PdCu membrane, for example. However, purity of the permeated H2 declined from about 97% to nearly 91% in the Pd membrane reformer whereas it remained steady at 98% when using the PdCu membrane. In addition, the twice as high single gas H2 permeation rate of the Pd membrane was reduced by ca. 85% during reforming due to inhibition by unstable carbon compounds while that of the PdCu membrane was diminished by less than 60%. Hence, the relative H2 permeability of the two membranes was virtually inverted under reforming conditions. In consequence, PdCu membranes are clearly the better option for integration into high-temperature ethanol steam reformers.

中文翻译:

PdCu膜反应器中的高温乙醇蒸汽重整

摘要 乙醇的膜辅助蒸汽重整是在汽车燃料电池的加气站从生物质现场生产氢气的一个有趣的选择。如果该过程可以在高压下输送氢气,则可以显着降低 H2 压缩的能源消耗,从而显着降低燃料成本。热力学分析表明,需要高于 823 K 的重整温度才能获得 H2 分压,这将能够在没有吹扫气的情况下运行并显着节省压缩能量。在 873 K 和 1.3 MPa 的压力下,6:1 蒸汽/乙醇混合物的重整实际上是使用薄的、负载的 Pd 和 PdCu 膜完成的,没有吹扫气。在对这些膜进行 10 天的连续测试期间,H2 产量和 H2 回收率均保持稳定。H2 产率达到近 94%,约 例如,92% 的 H2 被 PdCu 膜分离。然而,在 Pd 膜重整器中渗透的 H2 的纯度从大约 97% 下降到接近 91%,而在使用 PdCu 膜时它保持稳定在 98%。此外,Pd 膜的两倍高的单一气体 H2 渗透率降低了大约 10 倍。由于不稳定的碳化合物的抑制,在重整过程中减少了 85%,而 PdCu 膜的减少了不到 60%。因此,在重整条件下,两种膜的相对 H2 渗透率实际上是相反的。因此,PdCu 膜显然是集成到高温乙醇蒸汽重整器中的更好选择。在 Pd 膜重整器中,渗透的 H2 的纯度从大约 97% 下降到接近 91%,而在使用 PdCu 膜时它保持稳定在 98%。此外,Pd 膜的两倍高的单一气体 H2 渗透率降低了大约 10 倍。由于不稳定的碳化合物的抑制,在重整过程中减少了 85%,而 PdCu 膜的减少了不到 60%。因此,在重整条件下,两种膜的相对 H2 渗透率实际上是相反的。因此,PdCu 膜显然是集成到高温乙醇蒸汽重整器中的更好选择。在 Pd 膜重整器中,渗透的 H2 的纯度从大约 97% 下降到接近 91%,而在使用 PdCu 膜时它保持稳定在 98%。此外,Pd 膜的两倍高的单一气体 H2 渗透率降低了大约 10 倍。由于不稳定的碳化合物的抑制,在重整过程中减少了 85%,而 PdCu 膜的减少了不到 60%。因此,在重整条件下,两种膜的相对 H2 渗透率实际上是相反的。因此,PdCu 膜显然是集成到高温乙醇蒸汽重整器中的更好选择。由于不稳定的碳化合物的抑制,在重整过程中减少了 85%,而 PdCu 膜的减少了不到 60%。因此,在重整条件下,两种膜的相对 H2 渗透率实际上是相反的。因此,PdCu 膜显然是集成到高温乙醇蒸汽重整器中的更好选择。由于不稳定的碳化合物的抑制,在重整过程中减少了 85%,而 PdCu 膜的减少了不到 60%。因此,在重整条件下,两种膜的相对 H2 渗透率实际上是相反的。因此,PdCu 膜显然是集成到高温乙醇蒸汽重整器中的更好选择。
更新日期:2020-06-01
down
wechat
bug